
Fachhochschule Vorarlberg GmbH
University of Applied Sciences

Diploma Thesis

in the Degree Program

iTec – Information and Communication Engineering

Evaluation of Plug-In Architectures for a Test
Suite

implemented by

Jürgen Berchtel

0310109021

cooperation with

OMICRON electronics GmbH

Oberes Ried 1, A-6833 Klaus

Klaus, September 2007

Academic Supervisor: DI Wolfgang Auer

Danksagung

Ich möchte mich bei meinen Eltern Helga und Bernhard Berchtel herzlich bedanken,

da sie mein Studium ermöglicht und mich all die Jahre in allen Belangen unterstützt

haben.

Ganz besonders möchte ich mich an dieser Stelle auch bei allen bedanken, die mir

bei der Diplomarbeit hilfreich zur Seite standen:

• DI Wolfgang Auer, für die Betreuung dieser Diplomarbeit;

• DI Thomas Hensler, für die Betreuung seitens der Firma OMICRON

electronics GmbH;

• Carolin Dobler, Christoph Dobler und Christopher Pritchard für das

Korrekturlesen dieser Arbeit;

• Und all denen, die mich bei dieser Diplomarbeit mit hilfreichen Informationen

und Verbesserungsvorschlägen unterstützt haben.

 I

Kurzfassung

In dieser Diplomarbeit werden verschiedene Plug-In Architekturen für eine

Test Suite evaluiert. Bei der Test Suite handelt es sich um eine Windows-basierte

Anwendung, welche bei Prüfverfahren im Bereich der elektrischen Energieanlagen

zum Einsatz kommt. Das Plug-In Konzept ist gemäß Mayer u. a. weit verbreitet.

Das Konzept wird in vielen Anwendungen verwendet, um Kunden und

Fremdanbietern die Möglichkeit zu bieten, die Funktionalität der Anwendung zu

erweitern. Spezielle Adaptionen des Plug-In Konzeptes können auch für die

Entwicklung von komplexen Anwendungen verwendet werden. In diesem Fall wird

der Quellcode in kleine überschaubare Plug-Ins aufgeteilt, was zu einer höheren

Modularisierung der Anwendung führt.

Die Evaluierung der Plug-In Architekturen wird stark von den Anforderungen der

Test Suite beeinflusst. Diese Anforderungen wurden von der Firma OMICRON

electronics GmbH definiert. Die meisten dieser Anforderungen sind sehr allgemein

und ähneln somit auch Anforderungen anderer Projekte.

Für die Evaluierung wurden drei geeignete Lösungen untersucht. Diese basieren alle

auf dem .NET Framework, welches durch die Anforderungen vorgegeben ist.

Evaluiert wurden der Composite UI Application Block (CAB) mit den Smart Client

Software Factory (SCSF) Erweiterungen, das Spring .NET Framework und die

SharpDevelop Anwendung.

Die Stärken und Schwächen dieser Lösungen werden im Kapitel Evaluierung

diskutiert. Wie in der Arbeit festgestellt, ist in Bezug auf die Test Suite der

Composite UI Application Block die beste Wahl. Gründe die für CAB sprechen sind

zum einen die gute Benutzerschnittstellen-Integration für die Module und zum

anderen die Unterstützung für lose gekoppelte Komponenten.

Der Composite UI Application Block erfüllt nicht alle definierten Anforderungen.

Deshalb wird mit einem Prototyp gezeigt, wie diese mit der Hilfe von CAB

vollständig erfüllt werden können. Der Prototyp besteht aus einer Infrastruktur und

verschiedenen Plug-Ins. Die Infrastruktur bietet die von den Plug-Ins benötigten

Dienste an, wie zum Beispiel die Benutzerschnittstellen-Integration. Die Plug-Ins

zeigen mögliche Lösungswege für die Erfüllung aller Anforderungen. Diese

Diplomarbeit zeigt, dass CAB den Aufwand für die Realisierung einer Test Suite

verringern kann.

 II

Abstract

This diploma thesis evaluates various plug-in architectures for a Test Suite

application. The Test Suite is a Windows-based application which is used for test

procedures in the field of electrical power systems. The plug-in concept is widely

used according to Mayer et al. [MMS02]. The concept can be found in many

applications where it enables customers and third party manufacturers to extend

the functionality of the application. A special adoption of the plug-in concept is to

use it for building complex applications. In this case the separation of the code into

manageable small plug-ins can increase the modularity of the application.

The evaluation of the plug-in architectures is highly influenced by the requirements

for a Test Suite application. These requirements are defined by the company

OMICRON electronics GmbH. Most of the requirements are also adaptable to other

projects, even though they might be of other domains.

Three suitable solutions are chosen for the evaluation. One of the requirements

defines that the Test Suite has to be a .NET application. Therefore, all solutions are

based on the .NET Framework. Evaluated are the Composite UI Application Block

(CAB) with the Smart Client Software Factory (SCSF) extensions, the Spring .NET

framework and the SharpDevelop application.

These solutions all have different strengths and weaknesses which are discussed in

the evaluation chapter. The thesis shows that the Composite UI Application Block is

the most applicable solution for the requirements of the Test Suite and therefore it

is further investigated in this thesis. Reasons for using CAB are the good UI

integration for the modules and the support for loosely coupled components.

Because the framework does not support all requirements out of the box, a

prototype implementation was created to show a possible way to fulfill all defined

requirements. The prototype consists of an infrastructure part and several plug-ins.

The infrastructure provides common services which are needed by the plug-ins e.g.

the UI integration. The plug-ins show how the different requirements can be fulfilled.

This diploma thesis shows that CAB can reduce the effort for developing a

Test Suite.

 III

Contents

1 Introduction...1
1.1 Motivation ...1
1.2 Objective...2
1.3 Document Structure..2
1.4 Intended Audience..3

2 Requirements...4
3 Plug-In Architectures...8
4 Fundamentals ..11

4.1 Overview... 11
4.2 Dependency Injection.. 11
4.3 Service Locator .. 14
4.4 Attributes vs. Configuration Files... 16
4.5 Summary .. 18

5 Current Solutions ...19
5.1 Overview... 19
5.2 Composite UI Application Block... 19
5.3 Smart Client Software Factory .. 23
5.4 Spring .NET ... 24
5.5 SharpDevelop .. 27

6 Evaluation..31
6.1 Overview... 31
6.2 Fulfillment of the Requirements .. 31
6.3 Further quality issues .. 37
6.4 Strategic aspects .. 40
6.5 Decision .. 42

7 Prototype...44
7.1 Overview... 44
7.2 Architecture... 44
7.3 Modules .. 45
7.4 WorkItem hierarchy .. 54
7.5 Implementation of the requirements.. 55
7.6 Summary .. 59

 IV

8 Final Remark..60
8.1 Conclusion... 60
8.2 .NET Framework Application Extensibility 61
8.3 Open Issues... 61

 V

1 Introduction

1.1 Motivation
According to Mayer et al. the plug-in concept is widely used [MMS02]. It can be

found in many applications to enable customers and third party manufacturers to

extend the functionality. These applications are spread in various domains. Some

examples are:

• Office (e.g. Microsoft Office, OpenOffice)

• Browser (e.g. Microsoft Internet Explorer, Mozilla Firefox)

• Communication (Miranda IM, IBM Lotus Sametime 7.5)

• Audio (e.g. Steinberg Cubase, Nullsoft Winamp)

• Development (e.g. Eclipse, Microsoft Visual Studio)

Providing a powerful plug-in architecture in a software product can help to

differentiate from competitors. These days a rich variety of systems are running in

the IT environments of the customers. Therefore, the manufacturer is seldom able

to support all of them. A plug-in architecture let others create the connection

between the application and the various IT systems while the manufacturer is able

to concentrate on its core business. For example the customer or third parties can

connect the application with an enterprise resource planning (ERP) system by

writing a new plug-in1.

An approach of building complex applications and particular GUI applications is to

use a plug-in architecture not only to offer an extension mechanism2 for others. It

can also be used to separate the own code into plug-ins and increase the

modularity this way.

The concept of plug-in-based application development (…) goes one step further.

Thereby, it is possible to divide the development of big systems into manageable

small components which can be evolved independently [MMS02].

The plug-in architecture supports a fundamental architectural design principle called

Separation of Concerns. That is to separate cohesive concerns into different

independent plug-ins. One advantage of this principle is that developers (or teams)

do not have to care about the whole application. They are able to concentrate on

their specific requirements and implement them in plug-ins.

Additionally, the use of plug-ins reduces the complexity of the design and makes it

more understandable [MMS02].

1 The term plug-in is also known as add-in, add-on, snap-in or extension [GK07].
2 An extension mechanism allows adding of new functionality without rewriting or

recompiling the main application. See also Extensibility in the Glossary.

 1

It is common for this approach that the plug-ins can also extend each other in a

well defined way. This improves the extensibility of the application as new

functionality can be introduced by adding new plug-ins. The important point is that

the existing code does not have to be changed as long as adding of functionality

does not violate the application design. Changing of already reviewed and tested

code should be avoided whenever it is possible.

The plug-in architecture allows the deployment of different plug-in sets to create

different application editions. This enables product managers to react in a flexible

way on market changes. Even upgrading to a more capable version of the product

can be done by installing only the necessary plug-ins.

1.2 Objective
The goal of this thesis is to find a plug-in architecture which fits the requirements of

a Test Suite. The Test Suite consists of different test modules which must be

developed and deployed independently. The test modules still require some kind of

communication mechanism for information exchange.

An important point is to analyze existing plug-in architectures on the fulfillment of

the specified requirements. The chosen architecture has to be adapted to the

requirements defined in this thesis because these architectures are mostly kept

abstract to cover as many scenarios as possible. The requirements that are not

covered by the architecture have to be addressed with own solutions. A prototype

application presents a way for fulfilling the requirements.

1.3 Document Structure
This thesis is divided into eight chapters. The content of these chapters are as

follows:

Chapter 2: Requirements

This chapter describes the requirements for a Test Suite product.

Chapter 3: Plug-In Architectures

Gives an introduction into modular application design and plug-in architectures.

Chapter 4: Fundamentals

Describes the Dependency Injection and Service Locator design pattern which are

common in application frameworks. Additionally, the chapter discusses the concept

of Attributes as they are used in some frameworks for configuration.

 2

Chapter 5: Current Solutions

This part describes the investigated plug-in frameworks. These are the Composite

UI Application Block, the Smart Client Software Factory, the Spring .NET framework

and the SharpDevelop application.

Chapter 6: Evaluation

Shows the evaluation criteria for the chosen solutions. Further, the chapter includes

a discussion of each criterion in association with the plug-in frameworks.

Chapter 7: Prototype

Presents the Test Suite prototype which deals with the requirements defined in

chapter 2. This chapter discusses the implementation and shows workarounds for

occurring problems.

Chapter 8: Final Remark

Contains the conclusion of this diploma thesis and lists some ideas for future work.

1.4 Intended Audience
This diploma thesis is primarily written for software architects and software

developers. It is advantageous if the reader has the following skills for

understanding this thesis:

• Good knowledge about the principles of object-oriented programming.

• Basic understanding of the programming language C# and the .NET

Framework. All the source code examples in this thesis are written in C# 2.0.

• Capability of reading UML class, UML sequence and UML component diagrams.

All UML diagrams in this diploma thesis use the UML 2.0 notation.

 3

2 Requirements

This chapter describes the requirements for a Test Suite product. The Test Suite is

a Windows-based application which is used for test procedures in the field of

electrical power systems. The Test Suite is intended to become a successor product

for the Test Universe 2.x [Omicron07a]. The requirements discussed in this thesis

are far not complete as only the relevant ones are listed here. Relevant means that

the requirements are in the field of plug-in architectures. The requirements

addressed in this thesis include:

• The runtime platform

• The test modules

• Handle complexity

• Dependencies between the modules

• Module loading

• Dependency resolution and lazy loading

• Deployment and versioning

• GUI integration

• Command service

• Extensions and communication between the modules

Most of these requirements are very general and can be adapted to other projects,

even projects in other domains. The requirements are defined by the company

OMICRON electronics GmbH. OMICRON is an international company providing

solutions for primary and secondary testing in the field of electrical power utilities

and industries [Omicron07]. All the listed requirements are of the category must-

have if they are not otherwise defined.

The Runtime Platform

The most important requirement is to define the runtime platform because it sets

the boundaries of the software architecture. The strategy of the company OMICRON

is to use the Microsoft .NET Framework 2.0 or a higher version as runtime platform

for new client applications which are running on a PC. The company’s preferred

programming language is C# which open source solutions should be written with.

The decision for using the Microsoft .NET Framework limits the deployment of the

Test Suite to PCs on which the Microsoft Windows operating system is running.

 4

The Test Modules

The Test Suite consists of test modules which enables the user to use different

kinds of test procedures on various targets. The modules implement whole use

cases with their own GUI elements, domain logic and module specific infrastructure.

The GUI elements need to integrate seamless into the Test Suite. A user should not

be aware of the different modules behind the GUI elements that he sees in the

application. Many test modules share the same requirements regarding the

infrastructure like logging, error handling, security, etc. To avoid implementing the

same infrastructure code in every test module separately, they require access to a

shared infrastructure implementation.

Handle Complexity

The complete Test Suite application is going to be a huge software product. The

predecessor is known as OMICRON Test Universe 2.x and has about 2 million lines

of code. Most parts are written in C++ whereas some newer parts are already

developed with C#. A single project for rewriting the Test Universe from scratch

with all its features is not manageable. Thus, the project needs to be divided into

smaller feasible ones. The dependencies of these projects have to be as low as

possible to remain controllable. Therefore the test modules need to be coded,

tested and deployed independently. Nevertheless, the modules have to cooperate

together. This cooperation includes extension and interaction with other modules.

Dependencies between the modules

Modules can use and extend functionality of other modules. Therefore, they have

dependencies among each other. The functionality is mostly represented by

services. Likewise the services have a dependency between the provider and the

consumer. The dependencies on service level can be divided into hard and soft ones.

Whereas the services defined by hard dependencies have to be available in order to

work, the services defined by soft dependencies do not have to. A module is still

able to work if some soft dependent services are not loaded but they run with

reduced functionality.

Module Loading

The modules have to be loaded by the application at runtime. They are not allowed

to have static references to other modules, because at compile-time it is not known

which modules are going to work together. The module loader has to support

configuration by a human-readable file and alternatively by command line

parameters. This provides a flexible way of exchanging the modules as only the

configuration file needs to be modified. It is especially useful in unit testing of a

specific module. During testing, all the dependent modules are replaced by some

mock modules. So the specific module is tested in an isolated environment.

 5

Dependency Resolution and Lazy Loading

The module loader needs the information of the module dependencies. The

dependent modules must be loaded before the defined module. Important to note is

that dependent modules can also be dependent on other modules. These

hierarchical dependencies can be represented in a tree data structure. Furthermore,

the modules should be loaded on demand. This is also known as lazy loading. It

means that modules are only loaded if they are used by the application or any other

module. This approach improves the application start-up time and saves resources

like memory.

Deployment and Versioning

Another point of the requirements is a strategy for the deployment of the Test Suite

with its modules. This includes installing, uninstalling and updating the whole

application or only a single module. Developers should be able to deploy new

module versions without affecting the application or other modules. From this it

follows that it can be necessary to deploy different versions of the same module on

the identical machine. Additionally, the different versions need to be loaded side-

by-side in the same client process. Not fulfilling this requirement results in a

problem known as DLL-Hell [Löwy05, p. 11]. A nice-to-have feature would be to do

the deployment tasks like installing, uninstalling or updating of the modules without

restarting the application.

GUI Integration

A module needs to integrate seamlessly into the Test Suite. Consequently it

requires an interface for the extension of the application GUI. The elements to

extend are the menu bar, toolbar, status bar, option dialog, open / save dialog, etc.

These extensions should be independent of the underlying user interface technology.

At the moment it is planned to use the reliable Windows Forms framework but in

future it will be the new Windows Presentation Foundation (WPF) which is

introduced in Microsoft .NET Framework 3.0. Writing GUI components is a time

consuming work. Therefore, it is not possible to change the GUI framework used by

the whole application in a single step. The Test Suite application has to support

both GUI technologies and even allow the mixing of modules which are based on

the different GUI frameworks.

Command Service

Additionally to the GUI extensions, some kind of command service is required. The

command service has to group different GUI elements (e.g. Menu item, toolbar

button, etc.) together. It needs to be possible to hide or disable all GUI elements

which are connected to the same command. This should be controlled by a

command state. The state is mostly dependent on the active status of the module

but in some cases a custom handling is required. Furthermore, the command object

has to be associated with one or more command handlers.

 6

Extensions and Communication between the Modules

The GUI extensions are already discussed in this chapter. Event though, other

types of extension are also necessary. This can be an extension of the domain

functionality of a module. A module has been able to provide various extensions

and also consume extensions of other modules. Beside extension, a loosely coupled

mechanism for communication between the modules should be available.

 7

3 Plug-In Architectures

The previous chapter shows the requirements of the Test Suite product. Some of

them can be fulfilled by a modular application design. Fowler writes that modularity

is about hiding a secret in its implementation that is not apparent from the

interface [Fowler04]. An example can be seen in Figure 1 whereas the modules

hide their implementation behind an interface.

Figure 1: The client uses one of the modules through an interface.

A modular application design has two essential advantages. The first one is that the

developer who writes the client does not have to understand the implementation of

the module to use it. The second advantage is that the implementation can be

exchanged without rewriting and recompiling the client code. To prevent

recompiling, a binary compatibility is necessary between the client and the module.

The .NET Framework provides this by compiling the source code (e.g. C#) into

Intermediate Language (IL) code. The IL code contains tokens to identify the fields

and methods instead of using offset memory addresses as it is common in machine

code. This is possible because the IL contains the meta-data of all types. Before the

IL code can be run, it must be converted by the Just-In-Time (JIT) compiler to

native machine code. The JIT compiling is an automatic process which is started at

runtime by the .NET Framework.

Separation of interface and implementation, and binary compatibility are a subset

of the principles of component-oriented programming [Löwy05, p. 6].

Over the last decade, component-oriented programming has established itself as the

predominant software development methodology. (…) Practitioners have discovered

that by breaking down a system into binary components, they can attain much

greater reusability, extensibility, and maintainability [Löwy05, p. 1].

Popular component-enabling technologies are DCOM, CORBA, JavaBeans, and

the .NET Framework which is a relatively new member in this field. As Löwy writes

the other principles of component-oriented programming are language

independence, location transparency, concurrency management, version control,

and component-based security. These principles are all supported by the .NET

Framework whereas a programmer does not have to adopt all of them.

 8

A component-enabling technology like the .NET Framework already fulfills some of

the Test Suite requirements. But one important aspect is not handled by

component-oriented programming. Someone has to wire the client with the

appropriate module implementation together. In the example seen in Figure 1 the

client could use the implementation of module A or B. One of the Test Suite

requirements needs the wiring dependent on the runtime configuration. For

example the client uses the implementation of module A by default and during

testing it uses the mockup implementation of module B. How this can be

accomplished in a flexible way is described as Plugin pattern [Fowler03, p. 499].

Use Plugin whenever you have behaviors that require different implementations

based on runtime environment. [Fowler03, p. 500]

The Plugin pattern adapts the Factory pattern [Larman04, p. 440] which reads the

linking (wiring) instructions from a single, external point in order to keep the

configuration management easy. The linking has to be done at runtime rather than

during compile time. Otherwise, a rebuild would be necessary if the configuration

changes. This can be accomplished via reflection which is supported by the .NET

Framework.

A software design that uses the Plugin pattern is called plug-in architecture in this

thesis. These architectures can be divided into two categories which are based on

the same concept but fulfill different requirements. The former one is used to

increase the modularity of the internal application design. This one is addressed in

this diploma thesis. The latter plug-in architecture is used to provide an automation

and extension interface for third parties. It shares the requirements of the former

one and comes up with new ones. The most important additional requirements are

backward compatibility and isolation. An application (host) evolves considerably

faster as the plug-ins of third parties. Thus, the interfaces for external plug-ins

have to be more robust as the internal application design. Otherwise it is likely that

plug-ins stop working because the application was updated. Some plug-in

frameworks help to ensure backward compatibility for older plug-ins. The second

requirement is the isolation of a plug-in from the host and other plug-ins. This

allows the host to be unaffected of unstable plug-ins. In addition, it is often

combined with sandboxing of the plug-ins to increase the security. The realization

of these advanced requirements comes at high costs. A version resilient

architecture is far more complex and the communication between isolated parts

comes with high performance penalties. Although the Test Suite does also require

this kind of plug-in architecture, it is not in the scope of this diploma thesis.

 9

Modularization is an important principle in software engineering. It improves the

reusability which can lead to faster time to market, and lower development and

long-term maintenance costs. Modular software design is promoted by evolving

development methodologies like procedural programming, object-orientation,

component-orientation and aspect-orientation.

 (…), separating the interface from the implementation and separating configuration

from use are two vital principles in a good modularization scheme. [Fowler04, p. 67]

 10

4 Fundamentals

4.1 Overview
Plug-in architectures do not have to be designed and implemented from scratch

since already some sophisticated frameworks exist. The architecture of a plug-in

framework shall work with all applications of the intended domain. The Test Suite

product is in the domain of Windows-based applications. It is very difficult to design

a framework architecture that is applicable for a variety of applications. This means

that flexibility and extensibility are essential for a framework design [GHJV95, p.

27]. Additionally, low coupling between the framework and the application is

important. Modifications on the framework should not bring much migration work

for the application. Gamma et al. write the following about these issues:

A framework that addresses them using design patterns is far more likely to achieve

high levels of design and code reuse than one that doesn't. Mature frameworks

usually incorporate several design patterns. The patterns help make the framework's

architecture suitable to many different applications without redesign [GHJV95, p. 27].

Basic knowledge of the most important design patterns and concepts in the field of

plug-in architectures help to evaluate different plug-in frameworks. Particularly, it is

easier to estimate how a framework will affect the whole application design. The

previous chapter gives a short introduction into the Plugin pattern. Whereas this

chapter addresses some further important design patterns and concepts used in the

field of plug-in architectures.

4.2 Dependency Injection
The Dependency Injection (DI) pattern arose from the Java community when they

tried to find alternatives to the high complex enterprise Java world. This pattern

helps to wire components of different layers together. The components are often

developed by different teams with minor knowledge of each other. A well-known

task for an architect is to compose the components into a coherent overall

application. A number of design patterns, such as Factory Method, Abstract Factory,

Builder, etc. [GHJV95], are already devoted to deal with this issue. An alternative

for implementing these design patterns is to use a reliable framework. Some

frameworks, which deal with the wiring of components, are known as Inversion of

Control (IoC) container. They are also referred as lightweight containers because of

the minor performance impact and the lower application complexity compared to

other container technologies (e.g. Microsoft .NET Framework Enterprise Services)

[Caprio05].

 11

Inversion of Control is a general principle which is often used to characterize

frameworks [Fowler05]. It is also known as Hollywood principle “Don't call us, we'll

call you”. It means that the framework takes control over the program and calls the

code of the client. For example, a GUI framework calls a method of the client if a

button is pressed. Fowler writes that this term is too general and does not suite as

a description for the pattern used by IoC containers [Fowler04a]. Thus the name

Dependency Injection is used for this particular pattern.

In Dependency Injection a client object (Birthday printer) declares its

dependencies (Address book). Dependencies are objects (Address book

Implementation) which are required by the client to fulfill its tasks. The client is

not responsible to get the dependent objects. This is done by an external

mechanism which is known as Assembler. The specific characteristic of this pattern

is that the client does not have any dependencies to the Assembler or any other

object for locating the dependent objects. The resulting dependencies between the

classes can be seen in Figure 2.

class Dependency Injection

Birthday printer

+ setAddressBook(Address book) : void

Assembler

«interface»
Address book

Address book
Implementation

«use»

«create»

«create»

Figure 2: UML class diagram for dependency injection [Fowler04].

 12

The tasks of the Assembler are:

• Read the dependency information of the client object (Birthday printer).

• Create or locate the dependent objects (Address book Implementation)

• Create the client object (Birthday printer)

• Inject the dependent objects into the client object (setAddressBook).

This process is shown in Figure 3, except of reading the dependency information.

sd Dependency Injection

Birthday printer

Actor

Address book
Implementation

Assembler

Actor

startup

create

create

setAddressBook

print

getAddress

Figure 3: UML sequence diagram for dependency injection [Fowler04].

The Dependency Injection pattern does not define in which way the dependencies

have to be declared. A popular approach is to write the dependencies in an external

file, particular in an XML file. Another possible solution seen in DI frameworks is the

using of associated meta-data direct in the programming language like Attributes

in .NET or Annotations in Java.

How the Assembler locates the dependent object is not specified. The Plugin

pattern can be used for this task. A common way for the configuration of the Plugin

factory is the use of an XML file. XML files can be easily changed for different

deployment scenarios. Nevertheless, other approaches can be useful too like

retrieving the configuration dynamically from a server.

The injection can be done in various ways. Fowler writes that there are three main

styles of dependency injection [Fowler04a]:

• Type 1 IoC: Interface Injection

• Type 2 IoC: Setter Injection

• Type 3 IoC: Constructor Injection

 13

An example for Setter Injection can be seen in Figure 3. The Assembler calls the

setter method setAddressBook of the object Birthday printer to inject an

implementation of the Address book interface.

An alternative to the previous approach is that the Birthday printer class does

not provide the setter method. Instead, it requires the Address book

implementation already in the constructor (Listing 1). The Assembler passes the

implementation of the Address book interface to the Birthday printer

constructor. This procedure is called Constructor Injection.

 1 public class BirthdayPrinter
 2 {
 3 private AddressBook _book;
 4
 5 public BirthdayPrinter(AddressBook book)
 6 {
 7 _book = book;
 8 }
 9
10 ...

Listing 1: Extract of the client class which is configured by constructor injection.

Interface Injection is not relevant for this diploma thesis because the investigated

solutions do not support this type of injection. Most of the lightweight containers do

not promote this approach. According to Fowler, the reason is the more invasive

nature of Interface Injection since many interfaces are required to get it working

[Fowler04a].

4.3 Service Locator
An alternative to Dependency Injection is the Service Locator pattern [Sun02].

Basically, it uses a central object (Service locator) that knows how to locate the

dependent objects (Address book Implementation). The dependent objects are

referred as services in this context. The client (Birthday printer) requests the

concrete implementation of the Address book interface from the Service locator.

In contrast to the Dependency Injection pattern the client takes an active role in

retrieving the concrete implementation. Thus, it has a dependency to the Service

locator (Figure 4).

 14

class Serv ice Locator

Serv ice locator

+ getAddressBook() : void
+ initAddressBook(Address book) : void

Birthday printer

Address book
Implementation

Assembler
«interface»

Address book

«use» «use»

«create»

«use»

Figure 4: UML class diagram for a service locator [Fowler04].

This time the tasks of the Assembler are (Figure 5):

• Create the services (Address book Implementation).

• Pass them to the Service locator (initAddressBook).

sd Serv ice Locator

Assembler

Actor

Address book
Implementation

Service locator Birthday printer

Actor

startup

create

initAddressBook

print

getAddressBook

getAddress

Figure 5: UML sequence diagram for a service locator [Fowler04].

How the Assembler is going to find the right implementation is neither specified by

this pattern nor specified by the Dependency Injection pattern. In this case the

Plug-In pattern is a possible solution too.

 15

The Service locator class can be realized as a Singleton [GHJV95, p. 127]. If the

Service locator should provide an implementation depending on the application

context, the Registry pattern [Fowler03, p. 480] is a good alternative. For example,

the Registry is able to provide a separate database connection service for every

thread which simplifies the development of multi-threaded applications.

The class diagram (Figure 4) shows the Service locator class with the service

specific methods initAddressBook and getAddressBook. These methods can be

written in a more general way, so that different services can be registered and

retrieved. The example code (Listing 2) shows how generics can be used to write a

general ServiceLocator class.

 1 public class ServiceLocator
 2 {
 3 public static T get<T>() { ... } // Instead of getAddressBook
 4
 5 public static void register<T>(T service) { ... } // Instead of
 6 // initAddressBook
 7 public static void deregister<T>() { ... }
 8 }

Listing 2: A generic service locator implementation.

In Listing 2 the type T is used to identify the service. Alternatively, a string or

integer value could be used as an identifier. Using the types has the advantage that

the refactoring and error checking capabilities of the IDE still works. The

disadvantage is that only one service of the same type can be registered. Thus, this

approach is not as flexible as using string or integer values as an identifier

[Nilsson06, p. 373].

4.4 Attributes vs. Configuration Files
The .NET Framework provides Attributes for adding meta-data to an assembly, a

type, a type member or other targets. The Attributes can rather be used to

declare information in the code than creating external configuration files. This is

also known as declarative programming. The meta-data can be read by an

application through the reflection API of the .NET Framework.

Declarative programming is an interesting alternative for configuring frameworks to

the classic configuration files. The main advantage is that the Attributes are

associated directly with a target. This can save a lot amount of configuration as it is

shown in Listing 3 and Listing 4.

 16

 1 [ServiceDependency]
 2 public IMovieFinder MovieFinder
 3 {
 4 set { _movieFinder = value; }
 5 }

Listing 3: Configuration of setter injection with an Attribute.

 1 <objects>
 2 <object id="MyMovieLister" type="MovieLister.MovieLister,
 3 MovieLister">
 4 <property name="MovieFinder" ref="MyMovieFinder" />
 5 </object>
 6 ...
 7 </objects>

Listing 4: Configuration of setter injection with an external XML file.

These both code examples list a setter injection configuration for the same

component. Listing 3 uses a ServiceDependency attribute for the configuration.

The configuration is minimal as it consists only of the Attribute type name. The

Attribute is directly above the MovieFinder property and thus, the meta-data is

attached to this property. Listing 4 configures a setter injection for another

Dependency Injection implementation in an external XML file. Here the

configuration consists of the lines 2, 3 and 4. In this case, more information is

necessary to configure the injection. Most of this information is necessary to

address the MovieFinder property. If the configuration has to refer to the code, the

approach with Attributes needs less amount of information. Furthermore, the

maintenance is simplified because the code and configuration is at the same place.

This makes in many cases of component refactoring, modifications to the

configuration unnecessary. For example, the renaming of the MovieFinder property

does not require a change to the information declared by the Attribute.

Attributes also have a few drawbacks. The main weakness is that they do not

physically separate the configuration from the code. If the Attributes are

overused, the source code can become messy [Sosnoski05]. Additionally the code

requires a reference to the assembly that provides the Attributes. This reference

can be a problem if the code should be independent of the framework or the library

(Framework dependencies, p. 38). The use of a configuration file does not have

these drawbacks.

Sosnoski [Sosnoski05] writes in more detail about the differences of using meta-

data inlined with the code and configuration files. He uses the term Annotations

instead of Attributes as it is the Java keyword for the same concept. Declarative

programming and external configuration files are widespread for framework

configuration. Understanding the impact of these concepts on the application design

helps to evaluate the frameworks.

 17

4.5 Summary
The Dependency Injection and the Service Locator patterns are two possible ways

to wire different components together. With the Service Locator pattern the client

retrieves its dependent objects by requesting a central object. In this case, the

client has an active role to get hold of the needed objects. In contrast, the client in

the Dependency Injection pattern has a passive role. An external mechanism is

responsible that the client gets the dependent objects. This mechanism is known as

injection.

These patterns are often seen in plug-in architectures. Understanding them can

help to evaluate the different architectures and frameworks. Dependency Injection

has a minor impact for the application design whereas Service Locator is easier to

understand and to debug. In the Service Locator pattern it is also possible to

provide different objects depending on the application context. Which pattern

should be preferred is dependent on the requirements.

A Dependency Injection implementation requires some kind of configuration. The

most popular ways for configuring are the use of Attributes and the use of

external configuration files. Both concepts have different advantages and

drawbacks. Which of them should be preferred depends on the requirements

defined for the application.

 18

5 Current Solutions

5.1 Overview
This chapter introduces the three chosen solutions which are analyzed and

evaluated in chapter 6. These solutions are based on the .NET Framework which is

a requirement defined in this thesis. They are well known in the .NET community,

yet more sophisticated solutions can be found. Some of them are mentioned in

chapter 8.3. The three chosen solutions share the same idea at the core level which

is to increase the modularization with a plug-in architecture.

5.2 Composite UI Application Block
The Composite UI Application Block3 (CAB) is a plug-in framework from Microsoft.

It helps to write complex Windows-based applications which are built of

independent components. The components can be composed together in a flexible

way to form an overall coherent application. The focal point of this Application Block

lies on user interface integration. The components are able to contain own UI

elements which can be hosted in a Shell. The Shell is responsible to show the

hosted UI elements and it defines a general layout to control their appearance. The

components are able to extend some special UI elements of the Shell like the menu

bar, tool bar, status bar, etc. The Composite UI Application Block is shipped as C#

and VB.NET 2005 version. It requires the Microsoft .NET Framework 2.0.

Architecture

CAB heavily uses and implements design patterns which are common in the

development of Windows-based applications. An overview of the CAB architecture is

shown in Figure 6. The design patterns used by the blocks are presented by the

elliptical shapes.

3 Official Website of the Composite UI Application Block:

http://msdn2.microsoft.com/en-us/library/aa480450.aspx.

 19

http://msdn2.microsoft.com/en-us/library/aa480450.aspx

WorkItem

View

Presenter

Controller

State

Model

MVC + MVP

Use Case
Controller

Lifetime
Container

Service
Locator

Object Builder

Shell Services

Core Services

Module Loading

Factory Builder

Dependency
Injection

SmartPartInfoActivation

Commands

UI Extension Sites

Workspace

Event Broker

CAB Application

State Persistence

ExtensionCryptography In
st

ru
m

en
ta

tio
n

Enumerator

Authentication

Loader

Strategy
Presenters

for UI

Command

Pub/Sub

Plugin

Figure 6: Patterns implemented or supported by the Composite UI Application Block

[MSDN06].

WorkItem

A WorkItem is a lifetime container for visual and non-visual components. Typically,

it contains all components which are necessary to handle a specific use case. The

WorkItem is responsible for creating and disposing these components. Additionally,

it provides an implementation of the Service Locator pattern to retrieve and register

services. This is an alternative to the Dependency Injection mechanism provided by

CAB.

The components managed by a WorkItem can access each other inside the

container. If the container is not able to find a component, it delegates the request

to its parent container. This behavior is known as Chain of Responsibility pattern

[GHJV95, p. 223]. The pattern allows the accessing and using of components which

are registered in parent containers. WorkItems are composed in a tree structure. A

CAB application always provides a single RootWorkItem which contains

infrastructure services used by the child WorkItems. Figure 7 illustrates an example

for a WorkItem composition. The RootWorkItem provides two services which can be

used by all child WorkItems. It creates a child WorkItem for handling a use case.

This WorkItem creates two additional child WorkItems which are responsible for a

second use case. These additional WorkItems are able to access the state of the

first use case.

 20

Figure 7: WorkItem hierarchy [MSDN06].

Object Builder

The Object Builder is the Dependency Injection Framework behind the Composite

UI Application Block. It is responsible for wiring the independent components

together. The dependencies of the components are defined by Attributes (e.g.

CreateNew or ServiceDependency). The Object Builder reads these Attributes

and injects the required components during the creation cycle. It supports

constructor and setter injection which can even be mixed. The Object Builder can

also be used programmatically without defining Attributes. The methods are

provided by the WorkItem. e.g. WorkItem.SmartParts.AddNew<OfficerView>();

Nevertheless, the Object Builder is a general purpose framework. CAB provides the

strategies for the Object Builder so that it knows how to interpret and react on

these Attributes. The Object Builder is also used by other Microsoft products like

the Enterprise Library, the Web Client Software Factory, and the Mobile Client

Software Factory. The source code is included in the Composite UI Application Block.

A newer compatible version can be downloaded to run in partial trust environments

and it is signed by the Microsoft patterns & practices team4.

Shell Services

The Shell Services block in Figure 6 contains some UI integration specific services.

The Workspaces host the UI elements and define their appearance. CAB already

includes some prefabricated Workspaces like the TabWorkspace which shows the UI

elements inside tabbed pages. The UI Extensions are services to extend exposed UI

elements. For example it is possible to add menu items into the Shell’s menu bar

via this service.

4 Official Website of the Object Builder: http://www.codeplex.com/ObjectBuilder

 21

http://www.codeplex.com/ObjectBuilder

It is common that more than one UI element invokes the same method. An open

file button can be hosted in a menu bar and a tool bar. Each of these buttons are

represented by an own UI element with different appearance settings. However,

both should call the same method if the user presses one of these buttons. This

issue is dealt by an implementation of the Command pattern [GHJV95, p. 233].

Furthermore, the Command implementation allows the association of one UI event

with multiple methods (command handlers).

Core Services

The Core Services block encloses the low level services which are provided by CAB.

The event broker is a loosely coupled, multicast event mechanism for components

managed by the WorkItems. The events can be published and subscribed

programmatically or via attributes. The State Persistence service can be used for

saving the current application state and for reloading it at the next application

start-up. If the application state contains sensitive data, the Cryptography service

helps to protect them. The CAB Application is an abstract class that defines the

application lifecycle and contains an instance of the root WorkItem. Extension and

Instrumentation can be used to monitor the lifecycle of the WorkItems.

Module Loading

In CAB the modules are a synonym to plug-ins. The Module Loading block in Figure

6 shows the Enumerator service which knows how to retrieve a list of the modules

to load. By default, a XML catalog file holds this list. The Loader service is

responsible for the module loading. It can use the Authentication service which only

loads the modules, the user has permission for. When a module has dependencies

to other modules it expresses the dependencies with the ModuleDependency

attribute. Behind the surface of these services the Plug-In pattern can be found.

License

The software can be used for every commercial and non-commercial purpose

without any fee. It is allowed to distribute modified versions and to combine it with

own products or services. Although, the license allows the modification of the

source code, it can complicate the migration to a newer version of the Composite

UI Application Block. The product does not come with any warranty or guarantee

from Microsoft. A specialty is that this software is only allowed to run on the

Windows platform. Thus, it is not permitted to run an application built on the CAB

on the Linux operating system with Mono as .NET runtime platform.

 22

5.3 Smart Client Software Factory
The Smart Client Software Factory 5 (SCSF) assists during the creation of a

composite Windows-based application which is build on the top of the Composite UI

Application Block. In this thesis the May 2007 release is used. SCSF can be seen as

an extension to CAB which uses additional software assets:

• Composite UI Application Block Extensions for WPF

• Enterprise Library 3.1

• Guidance Automation Extensions (for MS Visual Studio 2005)

• Guidance Automation Toolkit (for MS Visual Studio 2005)

• Application Blocks for supporting occasionally connected clients

Software Factory

SCSF uses the concept of a Software Factory. A Software Factory is a collection of

software assets, software tools and documentation. It helps to build applications

that share an architecture and a feature set. In the case of SCSF it supports all

composite Windows-based applications. The software assets can be reusable code

components and reference implementations. The software tools can be wizards,

code generators and visual designers. It is common to integrate these tools into the

IDE. For example the Smart Client Software Factory provides a wizard to create a

view with an associated presenter class. Typical parts of the documentation are an

architecture guidance, description of common patterns, how-to topics, and an

explanation of the reference application. A key concept of Software Factories is that

architects can customize them to their own needs. The use of Software Factories

helps to increase the consistency and quality of an application and it also boosts the

productivity by reusing software assets [SCSF06].

Composite UI Application Block Extensions for WPF

This application block extends CAB with a Windows Presentation Foundation (WPF)

integration layer. The layer allows the Shell to host WPF user controls in the same

way as it hosts Windows Forms controls. To activate the WPF integration layer the

WPFFormShellApplication can be used to initialize the Composite UI framework

with the needed services. The WPFUIElementAdapter service is responsible for

wrapping all WPF controls with ElementHost objects. The ElementHost class is part

of the .NET Framework 3.0 and can be used in Windows Forms-based applications

to host WPF controls. The WPF support, which is provided by this application block,

does not include the Shell and the UI infrastructure elements. They still need to be

implemented via Windows Forms controls.

5 The official Website of the Smart Client Software Factory:

http://msdn.microsoft.com/smartclientfactory.

 23

http://msdn.microsoft.com/smartclientfactory

License

The Smart Client Software Factory uses the same license as the Composite UI

Application Block.

5.4 Spring .NET
Spring .NET6 is an application framework which provides lots of functionalities to

simplify the building of enterprise applications. The functionalities are divided into

independent modules. An exception is the Core module which represents the

fundament of this framework. Most of the other modules require the Core to work

properly. The modular architecture allows to chose just the necessary modules for

own applications. Figure 8 shows an overview of the various modules shipped with

Spring .NET 1.1 RC1.

Figure 8: Overview of the modules in Spring .NET [Spring07].

Spring .NET supports the development of web applications and server components

but it lacks of assistance for Windows-based applications. Therefore, only the Core

block of the Spring .NET modules is taken into consideration for this thesis.

Although, other blocks (e.g. ORM) can be useful too for the development of a Test

Suite but they are not in the scope of the requirements defined in chapter 2.

6 The official Website of Spring .NET: http://www.springframework.net.

 24

http://www.springframework.net/

IoC Container

Spring .NET contains a flexible IoC Container for the wiring of collaborating

components. It supports constructor injection, setter injection and it is possible to

call a static factory method instead of a constructor. The preferred way of

configuring the managed objects and their dependencies is by an XML file. However,

the framework is flexible enough to be extended by other configuration

mechanisms.

Configuration

Typically, the components are described in an XML file (Listing 5). The XML

attribute ref can be used to declare the dependent components (Line 4). The

identification of the components is done via string values. Besides injecting

dependent components, Spring .NET is as well able to inject intrinsic values (Line 9)

and arrays. Moreover, it can modify collections which are exposed by properties.

 1 <objects>
 2 <object id="MyMovieLister" type="MovieLister.MovieLister,
 3 MovieLister">
 4 <property name="MovieFinder" ref="MyMovieFinder" />
 5 </object>
 6
 7 <object id="MyMovieFinder" type="MovieFinder.MovieFinder,
 8 TextFileMovieFinder">
 9 <constructor-arg index="0" value="Movies.txt"/>
10 </object>
11 </objects>

Listing 5: Extract of a Spring .NET configuration file.

Listing 5 shows a small example for a Spring .NET configuration. It uses the

MovieLister example from Fowler’s article about Dependency Injection

(Fowler04a). The configuration defines a MovieLister component that requires a

MovieFinder component in order to work (Line 2 - 5). The MovieFinder needs to

be injected into the property MovieFinder of the MovieLister class (Line 4).

Nilsson writes that the information in the Spring .NET configuration file is redundant

[Nilsson06, p. 380]. Most of this information is also available via the .NET type

system. The redundant information leads to a potential maintenance problem. The

configuration file has to be kept synchronous with the code. Changes in the code

might need modifications in the configuration file. This maintenance problem can be

reduced with a function called autowiring.

 25

Autowiring

Spring .NET is capable to resolve the dependencies of a component automatically.

This is done by inspecting the component definition via reflection. Listing 6 shows

the same example as Listing 5 but uses the autowiring function. By default,

autowiring is deactivated and has to be enabled for every object with the autowire

attribute (Line 3). Spring .NET knows different modes for autowiring [Spring07, p.

38]. The mode byType iterates through all reference-type properties of the

MovieLister component and it searches adequate objects for them.

 1 <objects>
 2 <object id="MyMovieLister" type="MovieLister.MovieLister,
 3 MovieLister" autowire="byType" dependency-check="objects">
 4 </object>
 5
 6 <object id="MyMovieFinder" type="MovieFinder.MovieFinder,
 7 TextFileMovieFinder">
 8 <constructor-arg index="0" value="Movies.txt"/>
 9 </object>
10 </objects>

Listing 6: Extract of a Spring .NET configuration file with activated autowiring.

If autowiring does not find an adequate object for a property, it simply ignores it.

The mode “checking for dependencies” allows guaranteeing that all properties are

initialized with dependent objects (Line 3). If the dependency check finds an

unassociated property, the framework throws an

UnsatisfiedDependencyException. The depencency-check attribute knows

further modes but they are not important for the autowiring [Spring07, p. 39].

Application Context

The application context represents the container that manages the lifecycle of the

components. These containers can be structured into hierarchies. This is

comparable to the WorkItem hierarchy of the Composite UI Application Block. The

context provides a Service Locator style access to the registered components. This

access can be used as an alternative to the Dependency Injection. Using the

Service Locator is not recommended as the component would have a reference to

the underlying framework. However, sometimes a component cannot be created by

the framework factory and thus it is necessary to retrieve the dependent

components manually.

Loosely Coupled Events

One of the services provided by the application context is the loosely coupled event

propagation. A component can register a publisher of which all .NET events are

routed to interested subscribers. Other components can register a subscriber which

receives all the events published by a specific type. The subscribers need to have a

method that matches the signature of the event delegate. The event wiring cannot

be done via the XML configuration file. Therefore a dependency to the application

context is necessary.

 26

License

Spring .NET is licensed under the Apache License, Version 2.07. Thus, it is an OSI

Certified Open Source Software. It has only the restriction that the attribution and

disclaimer has to be maintained. Important to note is that this software does not

come with any warranties.

5.5 SharpDevelop
SharpDevelop8 (#develop) is an open-source IDE for C#, VB.NET and Boo projects.

It is a well known alternative to Microsoft Visual Studio for developing .NET

applications. SharpDevelop is completely written in C#. The current released

version 2.1 requires the Microsoft .NET Framework 2.0 to run. This IDE is chosen

for the evaluation within this diploma thesis because of its architecture. The

application consists of a small core which includes an add-in system. Everything

outside the core is implemented as add-ins. This architecture supports the idea

behind SharpDevelop that it should be an open IDE for various programming

languages. Extending SharpDevelop with a new programming language can be

done by writing a new add-in [HKS03, p. 8]. The important point is that

SharpDevelop can be extended without the need of modifying existing code.

Add-In System

An add-in consists of an XML configuration file with the extension .addin and one

or more assembly files. The configuration file contains:

• Add-in name, author, description, etc.

• A unique add-in name and the add-in version. The version attribute value

can refer to an assembly to use its version number.

• Dependencies to other add-ins. They are defined by the unique add-in names

and optionally by the version numbers.

• A list of assemblies used by this add-in.

• Extension points (The explanation follows later in this chapter)

The add-in system provides a smart search strategy to locate the installed add-ins.

First, it searches for all .addin configuration files in the application AddIns

directory and its sub directories. It is common to divide add-ins in separate sub

directories to prevent file name collisions. The second step is the searching for the

AddIns.xml file in the user profile directory. This file allows the deactivation of add-

ins at user level and defining the location of external add-ins. The last step is to

search in the user profile AddIns directory and sub directories for .addin

configuration files. Concrete example directories are listed in Table 1.

7 Apache License, Version 2.0. See http://www.apache.org/licenses/LICENSE-2.0.
8 The official Website of SharpDevelop: http://icsharpcode.net/OpenSource/SD.

 27

http://www.apache.org/licenses/LICENSE-2.0
http://icsharpcode.net/OpenSource/SD

Location Example Directory

Application AddIns C:\Program Files\SharpDevelop\2.1\AddIns

User Profile %AppData%\ICSharpCode\SharpDevelop2.1

%AppData% C:\User\Juergen\AppData\Roaming (Windows Vista)

Table 1: Example directories of the SharpDevelop add-ins.

Deployment

The add-in system simplifies the deployment of add-ins. The installation process

consists of copying the add-in files to one of the special AddIns directories. It is not

necessary to modify the program configuration. Uninstalling is done by removing

the add-in files. A limitation of the add-in system is that the deployment tasks

(install, update and uninstall) require a restart of the application.

Add-In Tree

The add-ins are able to extend each other. For example an add-in can extend a

toolbar which is hosted by another add-in. SharpDevelop uses a tree structure to

manage the extension points [Grunwald06]. The access of a concrete extension

point is done via a path (e.g. /SharpDevelop/Browser/Toolbar). A path contains

nodes and optional sub nodes. The nodes define the behavior of the extension point.

The most simple node type is Class. This node type is responsible for creating an

instance of a defined class by invocation of the parameter-less constructor. Other

node types are responsible for creating UI elements or defining file filters for the

OpenFileDialog or SaveFileDialog. These are the node types supported by the

core. Further node types can be added by add-ins. The nodes are represented by

the Codon class which delegates the object creation process to a Doozer. The

Doozer class represents the node type and thus, it implements the behavior of a

node.

The extensions are declared in the .addin configuration file. This strategy is chosen

because the philosophy of the SharpDevelop developer team is to extract as much

data into XML files as possible [HKS03, p. 28]. An advantage of this approach is the

lazy loading of the add-ins. The .addin configuration files are read during

application start-up whereas the add-in assemblies are first loaded when one of

their extension points is accessed.

 28

Service Locator

The add-in tree can be seen as a configurable factory. One drawback of core

implementation is that different add-ins cannot share the same instance of a

component which is defined in the .addin configuration. Nevertheless, the add-in

tree is extensible and an implementation of the Service Locator pattern on the top

of it is simple. Listing 7 shows a SingletonDoozer that creates only one instance of

the object specified in the .addin file. The SingletonDoozer is registered at the

AddInTree which is a static class (Listing 8). Listing 9 shows an extract of

an .addin file that defines a MovieFinder component. The xml element Singleton

refers to the SingletonDoozer instance. If the component is retrieved by any add-

in, the SingletonDoozer is responsible to return an instance of the MovieFinder

component (Listing 10). A limitation of this implementation is that the shared

component needs a default constructor.

 1 public class SingletonDoozer : IDoozer
 2 {
 3 private Dictionary<string, object> instances =
 4 new Dictionary<string,object>();
 5
 6 public bool HandleConditions
 7 {
 8 get { return false; }
 9 }
10
11 public object BuildItem(object caller, Codon codon, ArrayList subItems)
12 {
13 string key = codon.Properties["id"];
14
15 if (!instances.ContainsKey(key))
16 {
17 instances.Add(key,
18 codon.AddIn.CreateObject(codon.Properties["class"]));
19 }
20
21 return instances[key];
22 }
23 }

Listing 7: A simple implementation for a SingletonDoozer.

 1 AddInTree.Doozers.Add("Singleton", new SingletonDoozer());

Listing 8: Registration of the SingletonDoozer.

 1 <Path name="/Service">
 2 <Singleton id="MovieFinder" class="MovieFinder.MovieFinder"/>
 3 </Path>

Listing 9: Define a component in the .addin file.

 1 movieFinder = AddInTree.GetTreeNode("/Service")
 2 .BuildChildItem("MovieFinder", null, null) as IMovieFinder;

Listing 10: Retrieve the MovieFinder component.

 29

Conditions

Every tree node can contain conditions to indicate whether the node should be

active. This is useful for dynamic changes of the nodes. For example, the

predefined condition WindowsActiveCondition can be used to ensure that a

toolbar button is only enabled if the editor window is active. The conditions are

declared in the .addin configuration file.

Framework

SharpDevelop is not primary designed to be a framework for building own

applications. Even though, the developer team state that the core can be used for

other Windows-based applications. Especially the add-in system would help to build

an extensible application.

(…) presents the AddIn architecture used in the IDE SharpDevelop, and how you can

use it in your own Windows applications [Grunwald06].

It is possible to build a completely different application on top of the AddIn tree by

just putting other Run commands in the tree. This application can then benefit from

the AddIn tree, just as SharpDevelop does [HKS03, p. 56].

It is also possible to use more than only the core of SharpDevelop. Though, some

code has to be changed for the own needs. Changing of the code has the

disadvantage that it would be incompatible with the maintained code by the

SharpDevelop team.

License

The source code of Sharp Develop is licensed under the GNU LGPL 2.19. Thus, it is

an OSI Certified Open Source Software. The license is comparable to the Apache

License, Version 2.0 but they are not compatible because of the different dealing

with patents [FSF07].

9 GNU LGPL, Version 2.1. See http://www.gnu.org/licenses/lgpl.html.

 30

http://www.gnu.org/licenses/lgpl.html

6 Evaluation

6.1 Overview
Object-oriented frameworks like the solutions discussed in the previous chapter are

difficult to evaluate.

One initial difficulty is to understand the intended domain of the framework and its

applicability to the application under construction [BMMB97].

The frameworks which are relevant for this thesis are known as application

frameworks [GB01]. Their purpose is to provide all the domain-independent

functionality needed in an application. The evaluated solutions extend another

application framework, the .NET Framework. In comparison to the .NET Framework

they provide additional functionality for more specific domains:

• The Composite UI Application Block can be used for Windows-based

composite applications.

• Spring .NET supports the building of enterprise applications.

• SharpDevelop provides a core suitable for Windows-based applications and

additionally ships services for building IDEs.

In the evaluation, the Composite UI Application Block is always used with the

extensions provided by the Smart Client Software Factory (Chapter 5.3).

The evaluation of the applicability of these frameworks for the Test Suite

application is done by checking the fulfillment of the requirements. This is dealt in

the next chapter. The applicability is the most important part in this evaluation.

Only suitable frameworks are considered in the next two evaluation parts which are

about further quality issues (chapter 6.3) and strategic aspects (chapter 6.4).

In all three evaluation parts the appraisal is done by using three grades:

• (+) … The requirement is completely fulfilled

• (o) … The requirement is partly fulfilled.

• (-) … The requirement is not fulfilled.

6.2 Fulfillment of the Requirements
This chapter presents the first and most important evaluation part. It checks the

fulfillment of the requirements which are defined in chapter 2. Table 2 shows a

summary of this evaluation which is discussed afterwards.

 31

Requirement CAB/SCSF
May 2007

Spring .NET
Version 1.1

SharpDevelop
Version 2.1

Runtime platform:
Minimum .NET Framework version

(+)
2.0

(+)
1.1

(+)
2.0

Open source and programmed in C# (+) (+) (+)

Test modules

Define test modules (+) (+) (+)

External configuration (+) (o) (+)

Loose coupling (+) (o) (-)

Lazy loading of modules (o) (+) (+)

Modules deployment (o) (o) (+)

GUI integration

Support for GUI extension (+) (-) (o)

Command service (+) (-) (o)

Loosely coupled events (+) (o) (-)

Table 2: Checking the fulfillment of the requirements which are defined in chapter 2.

Runtime platform

All solutions run on the .NET Framework 2.0 as it is specified in the requirements.

Open source and programmed in C#

The source code of the three frameworks is available and the used language is C#.

Define test modules

The .NET assemblies are an ideal candidate for representing the test modules.

Assemblies are the basic unit for versioning, security, and deployment. Hence, they

fulfill the requirements. An assembly can physically be a standalone application

(.exe) or a class library (.dll) [Löwy05, p. 23]. In the case of a test module the

choice would be a class library. By using assemblies the requirement is already

dealt by the .NET Framework. Therefore, the investigated frameworks do not have

to provide an own solution for defining the test modules.

CAB extends the .NET assemblies by the introduction of the abstract ModuleInit

class. A concrete implementation of this class is used to initialize the module.

During module loading this concrete class is searched by reflection and initialized

through the framework.

Spring .NET does not extend the functionality of the .NET assemblies. Because

the .NET Framework already fulfills this requirement, Spring .NET gets full grade

too.

In SharpDevelop a module is defined by the .addin xml file. This file refers to

a .NET assembly by using the Identity tag. The .addin file extends the meta-data

of the assembly with additional information.

 32

External configuration

The configuration for the module loading has to be in an external human-readable

file. Changes of the configuration need to be done without recompiling the

application. All investigated solutions use an adoption of the Plugin pattern to fulfill

this requirement. A short introduction of the Plugin pattern can be found in

chapter 3.

The module loader of CAB can be configured via a single XML file. This file contains

the module assemblies and the dependencies between them. The information about

dependencies assures that the modules are loaded in the correct order.

Spring .NET does not support the loading of modules in the same way as the other

solutions do. It can configure the wiring of single components in XML files. For the

reason that every module can contain many components the configuration gets

extensive. Moreover, the one who is configuring the application needs in-depth

knowledge about the dependencies of each component in the module. A way to

reduce the amount of configuration is to use the autowiring function of Spring .NET.

The setter injection with activated autowiring is limited because it is not possible to

define that some properties of an object need to be injected and others not.

Autowiring only saves the writing of the dependency information. The components

still have to be defined in the configuration file. That is the reason why Spring .NET

does not get full mark for this requirement.

SharpDevelop scans special directories for .addin files and interprets them.

The .addin files can define dependencies to other modules in a similar way as in

CAB. The main difference to CAB is that in SharpDevelop every module has its own

configuration file whereas in CAB a central configuration file is used.

All three frameworks ship XML schema files (XSD) for the configuration. This

simplifies the writing and editing of the configuration in an XML schema aware

editor. The requirements of this thesis also specify the configuration via command

line arguments. The frameworks do not provide direct support for this requirement

but the application can extend them to provide this functionality. A possible solution

with the CAB framework can be seen in chapter 7.5.

Loose coupling

Loose coupling between the modules is essential for fulfilling the requirements

which are defined in chapter 2. It allows the developing of modules by different

teams. Furthermore the modules can be isolated for testing. This simplifies the test

procedure since the dependent components can be replaced by mock objects. Loose

coupling can be achieved by programming to an interface (see chapter 3).

Nevertheless, the loosely coupled modules have to work together in a coherent

application. This means that the components of the modules have to be weird up.

 33

CAB and Spring .NET support the wiring by the Dependency Injection and the

Service Locator implementation. In both frameworks the Dependency Injection and

Service Locator implementation work hand in hand together and thus, they can

even be mixed in one application. The Service Locator implementation in

Spring .NET has one drawback. It does not allow the replacement of a service

instance during runtime.

SharpDevelop had a Service Locator implementation called ServiceManager in a

previous version [HKS03, p. 109], but the current version 2.1 has replaced the

ServiceManager with static service classes. This step simplifies the service usage

but it does not allow the replacement of the services any more. The isolating of

components during a test is impossible without replacing the dependent services. A

solution for implementing the Service Locator on top of the add-in tree is

demonstrated in chapter 5.5. The framework still gets the grade (-) because it does

not support loose coupling by itself.

Lazy loading of modules

The Test Suite is an extensive application. For keeping the start-up time at a

minimum, the modules have to be lazy loaded. This strategy handles the resources

in a smart way, as only the needed ones are allocated. If a user does not use some

modules during work these modules will never be loaded. Therefore, unused

modules do not waste any resources.

The Composite UI Application Block is not able to load the modules on demand.

This is due to the fact that the application integration is done in the module

initializing code. However, CAB investigates only the modules via reflection and

instantiates the subclass of ModuleInit. The services that the modules provide can

be loaded on demand with the ServiceCollection.AddOnDemand method.

Spring .NET does not support modules in a special way. Therefore, it has no need

to load the assemblies at the start-up process. The components, which are needed

by other components, are instantiated on demand [Spring07, p. 29]. If more

components have to use the same instance, the dependent component can be

defined as singleton. By default, singletons are instantiated during the start-up

sequence of the container. The lazy-init attribute allows delaying the creation

until the component requested for is the first time [Spring07, p. 18].

SharpDevelop defines the extension points in the .addin configuration files. These

configuration files are read at application start-up only. The loading of the add-in

assemblies is delayed until one of its extension points is accessed [Grunwald06a].

Modules deployment

Deployment is a topic that is well supported by the .NET Framework. .NET provides

version control for the modules and allows side-by-side execution of different

module versions in the same process.

The Smart Client Software Factory includes help topics and a reference application

for using ClickOnce deployment. ClickOnce simplifies the deployment tasks for the

end user and the manufacturer but it has its limitations.

 34

(…) if a program needs to carry out privileged operations that could affect other

applications or data on the target machine, such as performing unrestricted file

access or accessing the registry, then it may not be suitable for deployment using

ClickOnce [Noyes04].

The Test Suite requires unrestricted access to the file system and it has to install

native components like system drivers for the test devices. Therefore, ClickOnce is

not an option.

Spring .NET does not provide any special deployment features.

SharpDevelop simplifies the deployment of add-ins since the add-in files only need

to be copied into one of the specified directories. In contrast to CAB and

Spring .NET it is not necessary to modify a configuration file for installing and

uninstalling an add-in. A prefabricated add-in named AddIn Manager allows the end

user to control the add-ins. A limitation of the AddIn Manager is that the add-ins

can be installed into the user profile directory only. This issue is caused by a

security restriction of the operating system because it cannot be guaranteed that

the end user has write access in the application directory.

It is required to do the deployment tasks without restarting the application which is

not supported by all three solutions. The reason is that the .NET Framework cannot

unload .NET modules or assemblies. However, it is possible to load every module in

a different application domain. All application domains except of the default one can

be unloaded by the .NET Framework [Löwy05, p. 322]. The drawback of this

strategy is that the modules have to communicate through remoting with each

other. Solutions, which are using this strategy, are the System.Addin namespace

introduced in the .NET Framework 3.5 (Chapter 8.2) and the CAP .NET project

[Dhungana06]. If this requirement is not fulfilled, it is acceptable since it is just

defined as a nice-to-have requirement.

Support for GUI extensions

The test modules have to be integrated into the Test Suite user interface. For

example, a test module needs to add a new menu item in the menu bar of the Test

Suite. The challenge is to create the extension without having a dependency on a

concrete UI technology. Furthermore, a test module also needs also the possibility

to define own GUI extensions for other modules.

CAB provides a flexible mechanism to extend the user interface. This mechanism

consists of two parts which are integrated into the WorkItem. The first part is the

Workspace. It is used for hosting UI controls of other modules. The second part is

the UIExtensionSite. The extension site allows the extension of exposed UI

elements. Every module can use these parts to provide own GUI extensions. Both

parts are independent of the UI technology. The Composite UI Application Block

supports Windows Forms controls and allows the hosting of WPF controls in the

Workspaces. If other requirements occur, the framework can be extended.

 35

The Spring .NET framework does not support the building of Windows-based

applications out of the box. In version 1.1 the support is limited on Web-based

applications which are using ASP .NET. However, the framework can be extended

with the required functionality.

SharpDevelop provides GUI extensions through the .addin configuration files. This

extension mechanism is independent of the UI technology. The core supports the

handling of Windows Forms controls. If other technologies must be used, a

rewriting of the core is necessary. The rewriting of code is not the best strategy to

extend the functionality. After modifying the core it has to be accurately tested to

assure that no side-effects occur. An advantage of SharpDevelop is that every

module can register its own GUI extensions by defining a new AddInTree path. A

reusable mechanism for hosting of UI elements like the Workspace of CAB is

missing. Instead, SharpDevelop uses the specific WorkspaceSingleton class to host

the Windows Forms controls.

Command service

An implementation of the Command design pattern [GHJV95, p. 233] is necessary

for the Test Suite. It is required to decouple the UI elements from the command

handlers.

The Composite UI Application Block contains a command service. It is managed by

the WorkItem container. It is possible that different UI elements can register

themselves as command invoker to the same command as required. An adequate

CommandAdapter is necessary for registering a UI element. If a UI element type is

not known by the framework, a new adapter can be registered in the

ICommandAdapterMapService. Furthermore, the command supports the notification

of more than one command handler. The defining of a command handler is simple

because the CommandHandler attribute just needs to be attached to the method.

Spring .NET does not have a command implementation for user interface elements.

SharpDevelop provides a command implementation. The commands are defined in

the .addin file as an attribute of the associated UI element. Different UI elements

can use the same command class. The command class has to implement the

ICommand interface. From this it follows that the command class is already the

command handler. It is not possible that a second command handler can handle the

same command. Another drawback is that the command implementation is not able

to handle the command state. For example, the state is responsible for deactivating

all associated UI elements if the command cannot be executed. In SharpDevelop

this is done by Conditions. Nevertheless, the Conditions are associated directly

to the UI elements instead of associating to the commands. If more UI elements do

the same task the Conditions have to be applied to all of them. This means code

duplication in the .addin file.

 36

 1 ...
 2
 3 <Condition name = "ActiveWindowState" windowstate="Dirty,Untitled"
 4 nowindowstate="ViewOnly" action="Disable">
 5 <ToolbarItem id = "Save"
 6 ...
 7
 8 <Condition name = "ActiveWindowState" windowstate="Dirty,Untitled"
 9 nowindowstate="ViewOnly" action="Disable">
10 <MenuItem id = "Save"
11 ...
12
13 ...

Listing 11: An extract of the ICSharpCode.SharpDevelop.addin file that shows code

duplication.

Listing 11 shows the save ToolbarItem and the save MenuItem. Both items require

the same condition statement since the items have the identical meaning. In the

SharpDevelop .addin file the condition statement is duplicated.

Loosely coupled events

The framework has to support loosely coupled events for communication between

the modules. Hence, two objects can register themselves as publisher and

subscriber without knowing each other.

CAB supports the loosely coupled events even on dependency injection level. The

publishers have to define their event declaration with the EventPublication

attribute. The subscribers define the event handler method with the

EventSubscription attribute. The attributes use a string as identifier for the event

topic. The event publisher and subscribers are wired together by the framework

during the object creation.

Spring .NET has a built in support for loosely coupled events too. The objects have

to register themselves via the IEventRegistry interface at a central registry as

publisher or subscriber. It is possible to create own event registries but it is more

common to use the central event registry which is provided by the

IApplicationContext. A Dependency Injection style of event wiring is not

supported. Nevertheless, the main drawback is that a subscriber can wire itself to a

specific event only if a unique delegate type is used for the event. Otherwise, the

subscriber has to handle all events that match with its methods signatures. The

only filter that can be applied during registration of a subscriber is the publisher

type. Though, this can be a problem because the subscriber needs a reference to

the publisher for applying the filter.

SharpDevelop does not support loosely coupled events at all.

6.3 Further quality issues
The main quality aspect is that the frameworks provide the required functionality.

This is discussed in the previous chapter. However, this chapter deals with further

quality issues of the framework. Table 3 shows a summary of this evaluation part.

Afterwards the evaluation is discussed in detail.

 37

Requirement CAB/SCSF
May 2007

Spring .NET
Version 1.1

SharpDevelop
Version 2.1

Framework composition (o) (+) (+)

Framework dependencies (o) (+) (-)

Evolution (+) (+) (-)

Documentation

Purpose of the framework (+) (+) (+)

How to use the framework (+) (+) (o)

Detailed design of the framework (+) (o) (o)

Examples (+) (+) (o)

Table 3: Shows the evaluation of further quality issues.

Framework composition

It is common that frameworks must be composed with other frameworks to get all

the functionality which is required for the application. Frameworks are often

designed that they are in full control. Problems can occur if two composed

frameworks require both full control over the application [BMMB97, p. 11]. In case

of the Test Suite all investigated frameworks are designed for working with

the .NET Framework. Thus, no issues occur if the frameworks are composed

together with the .NET Framework. The situation changes if other frameworks, like

a persistence framework, are added.

In CAB and Spring .NET the framework takes over the control during Dependency

Injection. All the necessary objects for the Dependency Injection are created by the

framework. This can be an issue if the frameworks are composed with other

frameworks. For example, a persistence framework is usually responsible for

retrieving the persisted data and creating the necessary objects which are filled

with this data. In this case, both frameworks want to create the same objects. A

solution is that these objects are not created by Dependency Injection. Instead, the

objects retrieve the necessary services via the Service Locator implementation. In

Spring .NET the situation looks a bit better as the framework already supports

some additional frameworks (e.g. NHibernate) out of the box.

SharpDevelop is not affected by this requirement because it does not provide

Dependency Injection.

Framework dependencies

A characteristic of frameworks is that beside code reuse they also define the

application design. The application developer can concentrate on the

implementation without worrying too much about creating a good object-oriented

design. However, the drawback is that a framework is closely coupled to the

application.

As a framework evolves, applications have to evolve with it. That makes loose

coupling all the more important; otherwise even a minor change to the framework

will have major repercussions [GHJV95, p. 27].

 38

Dependency Injection helps to minimize or completely remove the dependencies

between the framework and the application. The investigated frameworks, which

support decoupling, use this pattern. An introduction in Dependency Injection can

be found in chapter 4.2.

The Composite UI Application Block uses the Object Builder for Dependency

Injection. Nevertheless, it does not completely decouple the modules from the

framework since the modules use Attributes to control the injection. The

Attributes are part of the framework. Therefore a reference to the framework is

necessary. Other dependencies arise through sub classing of the ModuleInit class

and the use of own sub WorkItems. Additionally, the Dependency Injection

implementation is not able to inject primitive types. If a service has to be

configured with primitive types, it has to be manually instantiated and passed to

the Service Locator. The use of the Service Locator also requires a reference to the

framework assembly. With all these dependencies to the framework they are still

lower as without using Dependency Injection at all.

Spring .NET provides a powerful Dependency Injection mechanism that allows the

complete decoupling of the modules from the framework. One exception is the use

of loosely coupled events. The modules which are using them require access to the

IApplicationContext and consequently, a reference to a Spring .NET assembly is

necessary. Another drawback is the high amount of configuration which is

necessary for the complete decoupling of the components.

SharpDevelop does not support Dependency Injection and thus, the add-ins are

closely coupled to the SharpDevelop core.

Evolution

The number of breaking changes during the framework evolution is an important

quality metric. Braking changes are all modifications in a framework that require

the application to be modified too. If many breaking changes are introduced in a

framework the effort for updating the applications to a new framework version is

high. This metric is very difficult to define. One solution is to have a look at the past

years of the framework and use this data to predict the future.

Since CAB was released in December 2005 no chances were made until September

2007. Microsoft has introduced new features with the Smart Client Software Factory,

but the CAB framework itself was not updated by SCSF. The fact, that the

framework did not need to be changed since its release, approves the high quality

of the framework.

 39

In Spring .NET the breaking changes of the version 1.0 release in September 2005

until the version 1.1 RC1 release in August 2007 are minimal10. It shows also here

that Spring .NET is a well designed framework. The conclusion is further supported

as version 1.1 introduces lots of new functionality without the need for changing

the API.

SharpDevelop is not intended to be a framework. That is why the stability of the

interfaces is not that important than in the other solutions. An example for a

breaking change with high impact is the elimination of the ServiceManager. The

book “Dissecting a C# Application - Inside SharpDevelop” that was first printed in

February 2003 describes the ServiceManager [HKS03, p. 109]. In the version 2.1

the ServiceManager does not exist anymore.

Documentation

Johnson discusses the amount of documentation that is necessary for a user to

understand a framework [Johnson92]. He states that the documentation should

contain:

• The purpose of the framework.

• Information on using the framework.

• The detailed design of the framework.

• Examples.

The purpose of all investigated solutions is well documented. The information on

using the framework is useful in CAB and Spring .NET but lacks with SharpDevelop.

This results from the fact that SharpDevelop is not intended to be used as an

application framework. The detailed design of the framework is only sufficiently

explained for CAB. The documentation of Spring .NET shows every possible usage

scenarios of the framework but does not explain the internal design in detail. The

SharpDevelop team has devoted a book to the design decisions they made in the

application [HKS03]. However, the book is outdated today and does not reflect the

current state of SharpDevelop. CAB and Spring .NET ships useful examples which

are also documented. In the case of SharpDevelop just a few examples exist

regarding the usage of the core to build own applications. These examples are not

in the official documentation of SharpDevelop.

6.4 Strategic aspects
The last part of this evaluation investigates some strategic aspects. These aspects

should help to forecast the availability of the framework in the future. Further, the

risk should be estimated, if the maintenance of the framework is discontinued soon.

Important to note is that the information for this part is gathered at July 3, 2007.

10 Breaking changes of Spring .NET 1.1:

 http://www.springframework.net/BreakingChanges-1.1.txt

 40

http://www.springframework.net/BreakingChanges-1.1.txt

Requirement CAB/SCSF
May 2007

Spring .NET
Version 1.1

SharpDevelop
Version 2.1

License (o) (+) (+)

Roadmap (o) (+) (-)

Support (+) (+) (o)

Number of involved Persons (o) 14 (+) 18 (-) 2

Table 4: Shows the strategic aspects of the evaluation (July 3, 2007).

License

All investigated solutions are under an open source license. This allows viewing and

editing the source code. It can be helpful for maintaining the framework by own

staff if it is necessary. However, this should only be a backup plan because the

frameworks are quite extensive. It would take some time for a developer to

understand the framework enough for executing maintenance tasks. The CAB

framework has a limitation since Microsoft does not allow their Application Blocks to

run on other operating systems than Windows. Right now this is not an issue for

the Test Suite but it limits the strategic decisions for the future.

Roadmap

Roadmaps are useful information for learning what direction a framework will take.

Still the information is mostly a matter of change and it is not possible to rely on it.

Furthermore, roadmaps do seldom show a strategic long term plan of a framework.

Microsoft does not have any plans to develop the Smart Client Software Factory

and CAB any further [Block07]. The reason is the announcement of the project

Acropolis which should become the successor of CAB. Microsoft states that they are

working on a migration path from CAB to Acropolis.

On the official website of Spring .NET it is possible to find plans for the successor

version 1.2 and 1.3 already. With this information it is possible to state that

Spring .NET is further developed and maintained in the near future.

The official website of SharpDevelop shows a roadmap for the successor version 3.x.

However, the roadmap does not contain any information about changes at the core

level.

Support

Support is not that important as the solutions ship with the source code. Even

though, it can be more economic to use the commercial support instead of an

employee for specific tasks. Typical tasks for using support are bug fixing in the

framework and employee training.

Microsoft provides support for the Smart Client Software Factory and CAB. This

information can be found on the official SCSF website.

The company Interface21 coordinates the Spring Framework .NET project.

Information about available training can be found on the official Spring .NET

website.

 41

The building of applications on top of the SharpDevelop core is not supported by

the company IC#Code. This company leads the SharpDevelop project.

Number of involved persons

The number of involved persons in the projects can help to determine the risk of

discontinuing an open source project.

Microsoft has already announced that the Composite UI Application Block is

discontinued. A migration path to the successor project is already in work. The

number of involved persons in the SCSF project is read from the SCSF community

website11.

In the Spring .NET project 18 persons are involved. The risk is minimal that

Spring .NET does not survive for the next years. This number is read from the

SourceForge website12.

In SharpDevelop are just two persons which are registered to be involved.

Therefore, the risk for SharpDevelop to be discontinued is high. The number is read

from the SourceForge website13.

6.5 Decision
The most applicable framework for the Test Suite application is the Composite UI

Application Block with the extensions provided by the Smart Client Software Factory.

CAB supports all defined requirements of chapter 2 at minimum partly. It is

superior to the other solutions because it has the highest degree of fulfilling the

requirements. Therefore, an implementation of the Test Suite on top of CAB causes

the least effort.

Spring .NET has some advantages over CAB. However, it lacks the support for

developing Windows-based applications. Due to the extensible nature of the

framework it would be possible to add the missing features. It still requires a

respectively high effort to implement them. Another major drawback is the amount

of configuration that is necessary to build an application in the size of the Test Suite.

Further, it requires in-depth knowledge of the modules to wire them together. The

autowiring functionality does not help much in this case.

The SharpDevelop project is not applicable since it does not support louse coupling.

This results in difficulties for separating the programming to different developer

teams. Additionally, it makes the testing of the modules complicated. The high

dependency to the framework and the lack of loosely coupled events does not meet

the requirements. SharpDevelop is not intended to be an application framework.

Thus, the interfaces are more unstable than in the other solutions investigated.

Unstable interfaces in a framework result in a high maintenance effort for own

applications.

11 The project website on CodePlex: http://www.codeplex.com/smartclient
12 The project website on SourceForge: http://sourceforge.net/projects/springnet
13 The project website on SourceForge: http://sourceforge.net/projects/sharpdevelop

 42

http://www.codeplex.com/smartclient
http://sourceforge.net/projects/springnet
http://sourceforge.net/projects/sharpdevelop

Both solutions, Spring .NET and SharpDevelop, have a few advantages over CAB. In

other projects, the decision on using one of these solutions may be better. If one or

none solution is applicable for an application, a study of the design ideas of these

frameworks is useful too. The prototype presented in the next chapter is built on

top of the Composite UI Application Block. The prototype implementation even uses

some good ideas from the SharpDevelop project.

 43

7 Prototype

7.1 Overview
The prototype is a basic implementation of the Test Suite. It presents possible

solutions for the requirements which are defined in this diploma thesis. The

implemented functionality in the prototype is limited to the scope of this thesis. It

does not represent a full featured Test Suite. The development of the prototype has

been concentrated on a few features, which are able to show the framework

integration, the use of different UI technologies as well as the shortcomings of the

CAB framework. The result is an infrastructure block and a collection of modules

that show different aspects of the requirements.

7.2 Architecture
The prototype is primarily a .NET 2.0 application that runs on top of the Composite

UI Application Block. One module uses the new UI technology called Windows

Presentation Foundation already which is part of the .NET Framework 3.0 (Figure 9).

Important to note is that the .NET Framework 3.0 is built on top of the .NET

Framework 2.0 and introduces four new framework libraries only. WPF is one of

them. The .NET Framework 3.0 does not change the common language runtime

(CLR) or the base class library (BCL) of the .NET Framework 2.0. That is the reason

why it is possible to mix .NET 2.0 and .NET 3.0 assemblies in one application.

.NET Framework 2.0

Composite UI Application Block Windows Presentation Foundation (WPF)
.NET Framework 3.0

Composite UI Application Block
Extensions for WPF

Test Suite - Prototype

Figure 9: Prototype architecture.

 44

Besides the usage of CAB and the extensions of SCSF as an application framework,

some further libraries are used in the Test Suite:

• The Exception Handling Application Block allows to define a consistent

handling for all exceptions that occur in the application. It is part of the

Enterprise Library 3.1.

• The Logging Application Block extends the logging functionality of the .NET

Framework. It is part of the Enterprise Library 3.1 too.

• The DockPanel Suite is a docking library for Windows Forms controls. It

mimics the look and feel of the Visual Studio 2005 IDE. The library is licensed

under the open source MIT license.

• The CAB Extension is a library which was developed during the

implementation of the prototype. It adds some reusable features to the

Composite UI Application Block.

7.3 Modules
This chapter gives a short overview of the implemented modules that can be used

by the Test Suite. Figure 10 uses an UML component diagram to show the modules

with their dependencies to each other. Every component with the stereotype

<<cab module>> represents a .NET assembly which implements a CAB module. The

interfaces shown in Figure 10 are implemented as separate .NET assemblies. They

provide all the necessary information for a CAB module to use and extend the

module which implements the interface assembly. It is also possible to divide the

implementation of an interface assembly into more CAB modules like it is done with

the Infrastructure.Interface assembly. An interface assembly consists of

Interfaces to decouple the service implementation and string identifiers to

access the UI integration functionality of the Composite UI Application Block. An

advantage of this approach is that the modules can be replaced on both sides of the

interface assembly. This is done for isolating a single module during unit testing.

 45

cmp CAB Modules

TestSuite Modules

Infrastructure

Shell «cab module»
Infrastructure.Module

«cab module»
Infrastructure.Layout

«cab module»
Message.Demo

«cab module»
Help

«cab module»
TestDev ice.Manager

«cab module»
FunctionGen.Driv er

«cab module»
FunctionGen.ControlView

«cab module»
SignalVisualizer

«cab module»
LogViewer

«cab module»
LogViewer.Demo

«cab module»
RTFEditor

Infrastructure.Interface

Help.Interface
Infrastructure.Interface

FunctionGen.Interface

TestDevice.Manager.Interface

TestDevice.Manager.Interface

TestDevice.Manager.Interface

Figure 10: An UML component diagram that shows the modules of the Test Suite.

Infrastructure

The Infrastructure block in Figure 10 contains the core of the Test Suite

application. All CAB modules require the functionality which is provided by the

infrastructure. Thus, the implementation of the infrastructure must be loaded first

by the application. The implementation is divided into three modules:

• Shell

• Infrastructure.Layout

• Infrastructure.Module

This allows the replacement of one module without affecting the others. For

example, the Infrastructure.Layout module can be replaced by another one to

define a new UI layout for the application.

 46

Many of the infrastructure functions are implemented as CAB services. These

services can be retrieved by the Dependency Injection implementation of the

Composite UI Application Block. If Dependency Injection cannot be used, the

services can be fetched from the WorkItem, which implements the Service Locator

pattern.

The Shell is the .NET assembly that contains the start-up code of the application.

It is responsible to initialize the application and to configure the CAB framework.

The Shell contains a message service for showing all kinds of messages to the user.

The reason for implementing the message service in this assembly is that an

exception can already occur during the application start-up. The Shell processes all

unhandled exceptions that are thrown in any module of the application. An

unhandled exception is shown to the user with the message service and is logged

by the Logging Application Block.

The Infrastructure.Layout module defines the appearance of the application. It

uses the DockPanel Suite library to define a user interface layout that is very

similar to the one of the Visual Studio 2005 IDE. A Workspace14 is necessary for

using the features of CAB to host views inside the DockPanel control. The CAB

Extension library contains an exemplary DockPanelWorkspace which is used by the

Test Suite application. This DockPanelWorkspace is able to host Windows Forms

and WPF user controls. Additionally, the layout module registers UI elements as

UIExtensionSites15 so that other modules can extend them (e.g. the menu bar).

Furthermore, this module registers common commands like copy and paste. Figure

11 shows a screenshot of the Test Suite. It contains markers to show which CAB

parts are behind the UI elements.

14 See also Shell Services (p. 21).
15 See also Shell Services (p. 21).

 47

Figure 11: Shows the UI elements of the Test Suite.

The Infrastructure.Module contains further services:

• The IUIElementCreationService is used for creating UI elements which can

be added to UIExtensionSites. This service helps to decouple the modules

from the UI technology used by the Shell.

• The IDocumentManager handles the document lifecycle tasks and keeps track

of all registered document types. This service mediates between the user

interface and the document. A module developer, who has to implement a

new document type, does not have to care about things like configuring the

OpenFileDialog component or enabling and disabling the save buttons.

• The IEditManager maps the basic edit functions (e.g. copy, paste …) of an

object to the edit menu of the application. Like the IDocumentManager, this

service also mediates between the user interface and an object. This object

needs to implement the IEditHandler interface. Many of the Windows Forms

controls and the WPF controls provide some of the methods which are

required by the IEditHandler interface. An adapter is necessary for using

one of the UI controls as an edit handler. This module already contains a few

adapters for common UI controls like the WPF TextBox. To simplify the

registration of an object for the IEditManager, this module contains an

adapter factory catalog.

 48

• The AdapterFactoryCatalog<IEditHandler> service is used to register new

IEditHandler adapters and retrieve adapters for a specific object. In Listing

12 the two WPF TextBox controls scaleX and scaleY are registered at the

IEditManager service. An important fact is that these objects do not

implement the IEditHandler interface. Thus, the Register method asks the

AdapterFactoryCatalog<IEditHandler> for an appropriate adapter. By

using this adapter factory catalog, the module developer does not have to

care about the IEditHandler interface as long as an adapter is already

registered for the needed object type.

 1 [ServiceDependency]
 2 public IEditManager EditManager
 3 {
 4 set
 5 {
 6 editManager = value;
 7 editManager.Register(scaleX);
 8 editManager.Register(scaleY);
 9 }
10 }

Listing 12: Registering of two WPF TextBox controls to the IEditManager.

Help

Figure 10 shows a dependency between the Test Suite modules and the Help

module. This module is optional because it is not part of the Infrastructure. A

module developer has to keep in mind that the service, which is provided by the

help module, might not be available. Thus, a module has to check if the help

service is available before it can be used. The Help module shows the help topics

inside a WebBrowser control. The prototype uses HTML files for the help pages.

Demonstration Modules

Three CAB modules in Figure 10 just demonstrate some of the functionality which is

provided by the infrastructure. These modules are guidelines for using the

infrastructure of the Test Suite. The modules are:

• LogViewer

• LogViewer.Demo

• Message.Demo

The LogViewer module allows the user to see the log entries in an application

window. This module uses the logging mechanism of the Logging Application Block.

The LogViewer provides a CustomTraceListener which can be configured in the

application configuration file. The configuration can contain different filter criteria to

limit the log entries, which are shown in the LogViewer module.

 49

The LogViewer.Demo is a sample module for showing how to use the logging

mechanism of the Logging Application Block. This module contains a view to define

the various log entry properties. A click on the log button writes the log entry to the

logger. The written log entries can be seen in the LogViewer module, in a text file

or somewhere else. The output depends on the configuration of the logging

mechanism.

The Message.Demo module is a demonstration of the message service provided by

the Infrastructure. It allows the user to show messages in a modal dialog, to

update the application status bar and to throw a predefined exception. The function

to throw an exception is used to see the reaction of the application on unhandled

exceptions. By default, the application shows unhandled exceptions through the

message service and logs the occurrence of the exception via the Logging

Application Block.

Editor

The RTFEditor module is an example to show how document oriented applications

can be created with the Composite UI Application Block. In a real Test Suite the

documents would be test reports with the feature to add some notes by the user.

For simplicity, the document in the prototype is a RTF file.

The module shows that the lifecycle of a WorkItem can be used to represent the

lifecycle of a document. The WorkItemController, which is aggregated by the

WorkItem, implements all the necessary functionality of a document object. The

controller also has the responsibility to show the document inside the Test Suite

user interface. The RTFEditor module uses the IDocumentManager to control the

document lifecycle. This service decouples the module from the application because

the module is not aware of how the application shows the create, open, save and

close functionality of the documents to the user. This module uses the

IEditManager too. This service mediates between the application user interface

and the RichTextBox control which is used to show the document. Thus, the

module does not need to care about things like disabling the cut and copy button if

no text is selected.

 50

Test Device Management

The CAB modules, which are shown at the bottom of Figure 10, are responsible for

the management of various test devices. The main module is the

TestDevice.Manager. This module is responsible for the lifecycle of the test devices.

It shows the connected devices in a list as it can be seen in Figure 12. The user is

able to configure and to disconnect one or more connected test devices. The

prototype does not contain modules for handling real test devices. Thus, virtual test

devices were invented. The TestDevice.Manager module is in charge for creating

virtual test devices. The function generators shown in Figure 12 are virtual devices

too.

Figure 12: A screenshot of the Test Suite with the TestDevice.Manager.

All of the following modules are depending on the functionality which is provided by

the TestDevice.Manager module (Figure 10). This functionality does not only

consist of services. It also includes an UIExtensionSite, Commands and a loosely

coupled event. This shows that every CAB module is able to provide its own user

interface extensions for other modules.

 51

The FunctionGen.Driver module represents a driver for virtual function generators.

A driver module is responsible to inform the TestDevice.Manager about connected

and disconnected test devices. In the case of virtual test devices, the manager

triggers the creation of new devices. It is transparent for the TestDevice.Manager

if a test device is a real one connected to the computer or a virtual one created by

the driver module. The driver contains information about the supported test devices.

This information is read by the manager. The virtual function generator of the

FunctionGen.Driver module is able to create sine, square, triangle and sawtooth

wave forms. Furthermore, the amplitude and the frequency can be configured. This

module does not contain any UI elements to configure the virtual function

generators. This is in the responsibility of the FunctionGen.ControlView.

The FunctionGen.ControlView module controls device drivers of the category

function generator. It contains UI elements for the user to manage the device

configuration and the device status. Figure 12 shows the UI elements of this

module. The separation of the driver and controller view responsibility into different

modules has the advantage that the controller view can be reused. The

FunctionGen.ControlView is not bound to the FunctionGen.Driver module. The

controller view can also be used for other function generator drivers. A new

function generator driver just implements the interfaces of the

FunctionGen.Interface assembly. Additionally, the driver has to register at the

TestDevice.Manager module with the same profile name as the

FunctionGen.ControlView does.

Figure 13 shows the process of how to create a new virtual function generator. The

stereotypes in the sequence diagram contain the information from which module an

object comes from. In this case the TestDeviceManager has the role of the actor

because the manager is in charge for triggering the creation of virtual test devices.

The interesting aspect of this process is that all needed services are registered at

the same WorkItem. This way the FGenControlView object can access the driver

services to control the test device.

 52

Figure 13: A simplified UML Sequence diagram of creating a new virtual device.

sd
 T

es
t D

ev
ic

e
M

an
ag

em
en

t

A
ct

or

«c
on

tro
l v

ie
w

»
:F

G
en

C
on

tro
lV

ie
w

Fa
ct

or
y

«d
riv

er
»

d
:F

un
ct

io
nG

en
D

riv
er

«d
riv

er
»

w
i :

W
or

kI
te

m

«d
riv

er
»

:In
st

an
ce

C
on

tro
lle

r

«d
riv

er
»

:M
od

ul
eC

on
tro

lle
r

«c
on

tro
l v

ie
w

»
cv

:F
G

en
C

on
tro

lV
ie

w

cr
ea

te

C
re

at
e(

w
i)

:IC
on

tro
lV

ie
w

«t
es

t d
ev

ic
e

m
an

ag
er

»
:T

es
tD

ev
ic

eM
an

ag
er

R
eg

is
te

r(t
hi

s)

cr
ea

te

S
er

vi
ce

s.
A

dd
<I

D
ev

ic
e>

(th
is

)

S
er

vi
ce

s.
A

dd
<I

C
on

tro
lV

ie
w

>(
cv

)

S
er

vi
ce

s.
A

dd
<I

Fu
nc

tio
nG

en
>(

d)

cr
ea

te
(w

i)

R
un

()

cr
ea

te

cr
ea

te
 v

irt
ua

l d
ev

ic
e

 53

The SignalVisualizer module draws a graph of one or more signals. Figure 12

shows the visualizer at the bottom of the screenshot. In the screenshot two graphs

are visible. These graphs are created by two different function generators which are

running simultaneously. The signals are typically raised by the device drivers. The

loosely coupled event mechanism of CAB is used to carry the signal from the source

to the visualizer. The source creates a SampleEventArgs object which contains the

amplitude and the timestamp of the signal sample. This object is sent through the

loosely coupled event mechanism to all interested receivers. The visualizer is one of

them. The reason for this design strategy is the decoupling of the visualizer module

by using the CAB event broker. This module does not have any dependency to the

FunctionGen.Driver module which acts as signal source. The SignalVisualizer

is the only module of this prototype application which uses WPF controls. However,

it can be completely integrated into the Test Suite application, although the

application uses the Windows Forms technology.

7.4 WorkItem hierarchy
The core element of CAB is the WorkItem 16 . It represents the container which

manages all the objects instantiated by Dependency Injection. Figure 14 presents

the WorkItem hierarchy of the Test Suite.

Figure 14: The WorkItem hierarchy of the TestSuite.

16 See also WorkItem (p. 20).

 54

Typically, every CAB module provides its own WorkItem. The services registered by

a module are available at the module WorkItem or any sub WorkItems. Only the

services registered at the root WorkItem can be accessed in the whole application.

Due to this fact, the modules FunctionGen.Driver, FunctionGen.ControlView

and SignalVisualizer register their module WorkItems in the

TestDevice.Manager WorkItem. Hence, these WorkItems can access the services

provided by the TestDevice.Manager.

Sub WorkItems are often used to handle a part of the use case. In Figure 14 the

Documents are such sub WorkItems. A Document WorkItem manages the lifecycle of

a document and it controls the UI window which shows the content to the user. The

other sub WorkItems seen in Figure 14 are the Device Instances. Each of them

represents a test device.

7.5 Implementation of the requirements
This chapter describes how the requirements are implemented by using the

Composite UI Application Block. For most of the requirements the prototype only

shows one of the possible ways to solve them.

Configuration of the module loader

The configuration of the module loader is done in an XML file. The prototype is

using the built-in dependency module loader which is shipped with the Smart Client

Software Factory. It allows the definition of dependencies inside the XML file.

Additionally, the configuration via command line arguments of the application is

required. The first idea was to pass all information of the XML configuration file as

command line arguments. This idea is not practical because all the information in a

single line is not readable any more. Therefore, a command line argument parser is

implemented to let the user choose which XML configuration file should be used.

The different configurations can be defined in XML files. If the user does not set the

command line argument, it reads the default file ProfileCatalog.xml.

Isolate the objects under test

The prototype includes a unit test project for the TestDevice.Manager module. It is

using the Visual Studio 2005 unit test framework. The project tests all non-UI

classes of the module. These are the ModuleController, the TestDeviceManager

and the TestDevicesViewPresenter class. Additionally, the UI-class

TestDevicesView is partially tested. A complete test of an UI-class requires special

tools or frameworks because the input devices like a mouse have to be simulated.

 55

The notable aspect is that all of these classes are completely isolated for the tests.

This means that all the needed objects of these classes are replaced by mock

objects. The needed objects are mostly services from the framework but they can

also be collaborators of the same module. Before a unit test runs, the framework is

initialized with these mock objects. The mock objects can be used to test the

correctness of the interaction between them and the object under test. The abstract

class FixtureBase initializes the framework with the test configuration. All the test

classes derive from FixtureBase and reuse the framework setup. The unit test

writing can be done with minor effort by reusing the framework setup.

Lazy loading

The Composite UI Application Block is able to load services on demand. The

prototype is using this feature for the DocumentManager. The DocumentManager

uses the OpenFileDialog and the SaveFileDialog class which uses native

resources. With performance in mind these classes are typically lazy instantiated to

save resources if they are not used. The framework already implements service

loading on demand. Therefore, a software developer does not need to care about

lazy loading inside the services.

Modules deployment

The projects that are created with the Smart Client Software Factory in Visual

Studio build all their files in the same directory. This may become problematic

because the resource filenames could be identical with the ones of other modules.

It is also possible that the modules use different versions of the same assembly. If

all the files are deployed in one directory, the installation of a new module could

overwrite files from other modules. The Test Suite uses customized build paths for

deploying every module in a separate directory to prevent the mentioned issues

(Figure 15). Furthermore, the module loader configuration files have to be adapted

to the new path names.

Figure 15: File structure of the Test Suite.

 56

Beside the Modules directory tree, the following directories are created:

• Infrastructure contains all files for the infrastructure. The infrastructure

files are the application assemblies that are required by all other modules.

• Libraries include all the necessary library files that are shared by the

modules. For example, the CAB assembly files are in this directory.

• Resources contain all the resource files that are shared by the modules.

By using these sub directories, the common language runtime (CLR) has to be told

where it is going to find the assemblies. A way to accomplish this, is to add the

probing element in the application configuration file as it is shown in Listing 13.

 1 <runtime>
 2 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 3 <probing privatePath="Libraries;Infrastructure" />
 4 </assemblyBinding>
 5 </runtime>

Listing 13: Extract of the application configuration file of the Test Suite.

Support for GUI extensions

CAB supports GUI extensions in two ways. The first one is via the Workspaces.

They are responsible to host the views of the modules. The Test Suite provides a

DockPanelWorkspace to host views inside the shell form. Furthermore, it contains

the FormWorkspace to host views in an own modal dialog. Both Workspaces are

able to host Windows Forms controls and WPF controls. Due to this feature, a step-

by-step migration of the older UI technology to the newer one is supported. All the

modules of the Test Suite prototype use Windows Forms controls for their views

except of the SignalVisualizer. This module implements all its views as pure WPF

controls.

The second way to support GUI extensions is done through UIExtensionSites. The

Infrastructure.Layout and the TestDevice.Manager module register UI

elements as extension sites. The other modules are able to extend these UI

elements. For example, the SignalVisualizer adds a new menu item into the drop

down list of the View menu item which is defined by the Infrastructure.Layout.

The help topics of CAB and the reference application of SCSF show how to use

UIElementSites. In their examples, the modules create the concrete UI elements

and add them to a UIExtensionSite. The problem is that the modules have to

know which concrete UI element is behind the UIExtensionSite. For example, the

Infrastructure.Layout registers a MenuStrip instance. All modules, which have

to extend the MenuStrip, create ToolStripMenuItem elements and add them to

the UIExtensionSite. If the MenuStrip in the Infrastructure.Layout module is

replaced with another similar control, all the modules have to be modified.

 57

The Test Suite prototype solves this problem with the IUIElementCreationService.

The modules use this service to create the necessary UI elements. Thus, the

modules do not have any dependency to the UI technology which is used in the

Infrastructure.Layout module. If the UI technology is replaced in the layout

module, just the IUIElementCreationService class has to be updated.

Command service

The Test Suite uses the built-in command system of CAB. It can handle all the

needed requirements for most use cases. One of the exceptions is the handling of

the edit functions cut, copy and paste. Here, the command should be routed to the

active UI element only. In Windows-based applications the active UI element is the

one which has the focus. Besides command routing, the command states are

depending on the active UI element. If the active UI element does not support

these commands or no elements are selected, the according commands have to be

deactivated. In the Test Suite, the EditManager takes care for the special

treatment of these commands.

Loosely coupled events

The Test Suite uses loosely coupled events for various reasons. The modules can

use the CAB event broker to update the text shown in the application status bar.

Moreover, the communication between the Presenter / WorkItemController and

the Presenter / Presenter classes is done with the loosely coupled events. A

special case is the transmission of the signal samples over the event broker. The

SignalVisualizer registers for this event topic and displays the samples. The

event handling has to be synchronized since the SignalVisualizer runs in the UI

thread and the signal samples are created by other threads. CAB provides a simple

solution for thread synchronization in the event handler as it is shown in Listing 14.

 1 [EventSubscription(EventTopicNames.Sample,
 2 Thread = ThreadOption.UserInterface)]
 3 public void GotSample(object sender, SampleEventArgs sample)
 4 {
 5 ...

Listing 14: Thread synchronization in the event handler.

The synchronization with the WPF control of the SignalVisualizer does not work

properly. During the application shutdown a NullReferenceException is thrown in

the System.Windows.Forms.Control.WaitForWaitHandle method. The exception

is only thrown if a virtual function generator is not turned off before the application

is closed. Even then, the exception does not occur every time. This is a typical

behavior for threading issues. Therefore, the prototype does not use the

synchronization functionality of the CAB event broker. Instead, the view

synchronizes the method call manually.

 58

 1 public void AddSample(object device, double amplitude,
 2 double relativeTime)
 3 {
 4 if (Dispatcher.CheckAccess())
 5 {
 6 InnerAddSample(device, amplitude, relativeTime);
 7 }
 8 else
 9 {
10 Dispatcher.Invoke(DispatcherPriority.Normal,
11 new AddSampleDelegate(InnerAddSample), device, amplitude,
12 elativeTime);
13 }
14 }
15
16 private void InnerAddSample(object device, double amplitude,
17 double relativeTime)
18 {
19 signalView.AddSample(device, relativeTime, amplitude);
20 }

Listing 15: Shows how thread synchronization can be done in WPF controls.

Listing 15 shows the manual thread synchronization. The code extract is part of the

VisualizerView class. The Dispatcher.CheckAccess method verifies if the call

needs to be synchronized. Dispatcher.Invoke calls the InnerAddSample method

synchronized with the UI thread.

The communication between the function generator and the visualizer via loosely

coupled events is just exemplarily. Typically, signal samples have to be processed

in real time and not in the way it is done in the prototype. The event broker is to

slow for processing signals with high frequencies. However, it is a good example

why synchronization can be necessary in association with loosely coupled events.

7.6 Summary
The Test Suite implementation presented in this chapter handles all the

requirements which are defined in chapter 2. Nevertheless, many requirements are

already handled by the .NET Framework or the Composite UI Application Block. The

CAB framework successfully reduced the effort to create the prototype application.

However, the learning time for understanding the framework cannot be disregarded.

CAB is very powerful through its abstract and flexible design but it is also highly

complex. Microsoft has seen that the complexity of the framework is a problem for

many users. Therefore, they introduced the Smart Client Software Factory. SCFS

assists the software developer in common tasks and it is delivered with extended

documentation. Nevertheless, it does not help much in learning the concepts of the

key parts, the Object Builder and the WorkItem of CAB.

 59

8 Final Remark

8.1 Conclusion
Most of the requirements are general ones that are not limited on specifying a Test

Suite. They might also be true for other applications, even applications of other

domains. Many requirements can be fulfilled with a modular application design.

Component-oriented programming promotes the building of modular applications

[Löwy05, p. 1]. The .NET Framework is based on the principles of a component-

enabling technology and thus helps to achieve this goal. One important feature

missing in the current .NET Framework 3.0 is a mechanism to wire loosely coupled

modules together at runtime. Here the plug-in architecture comes into play. This

kind of architecture is already widely used in desktop applications. Manufacturers

and institutions started the development of plug-in frameworks because the

implementation of a plug-in architecture is not a trivial task. These frameworks

assist the software developer to build plug-in based applications.

The Composite UI Application Block is one of these frameworks. It is used in

combination with the Smart Client Software Factory for the prototype application to

show how the requirements can be fulfilled. The application framework saves a lot

of time in implementing the prototype since it already fulfills a couple of the

requirements. Additionally, it promotes good object-oriented design by wizard

driven code generation. Nevertheless, one of the major drawbacks is the high

learning effort for this framework. Microsoft tried to address this issue with the

Smart Client Software Factory but still the effort is not negligible.

In my opinion the uses of plug-in architectures will grow in the future. This strategy

is supported by general application requirements like testing of isolated

components. Furthermore, it can reduce the complexity of applications and

decrease the maintenance efforts. Some IDEs already support the plug-in based

development like the Eclipse Plug-In Development Environment 17 . The high

learning effort is one of the main drawbacks of plug-in architectures. This drawback

is weakened by the fact that an IDE like Eclipse supports the development of plug-

ins and thus simplifies the usage of plug-in frameworks.

17 The official Website of Eclipse PDE: http://www.eclipse.org/pde

 60

http://www.eclipse.org/pde

8.2 .NET Framework Application Extensibility
In the previous chapter it is mentioned that the .NET Framework 3.0 does not

provide an implementation of a plug-in architecture. The successor of this

framework version is going to deal with this issue. Microsoft introduces the

System.Addin namespace in the .NET Framework 3.5. This namespace contains a

plug-in framework with the main focus on application extensibility for third parties.

Thus, the design goal behind this namespace is to enable dynamic composition of

version resilient, isolatable components [GK07]. It contains a communication

pipeline between the host and the add-in to enable compatibility because both parts

can evolve independently [GK07a].

The System.Addin namespace shares some ideas with the Composite UI

Application Block but it has its strength in another domain. The requirements,

which are defined in chapter 2, do not have the need for version resilient, isolatable

components. Therefore, the use of the System.Addin namespace is not practical to

fulfill these requirements.

8.3 Open Issues
This diploma thesis concentrates on the evaluation of three plug-in frameworks. In

a future work further suitable solutions could be investigated and compared with

the plug-in frameworks of this thesis. Examples for such solutions could be as

follows:

• Castle Project Windsor Container18

• StructuredMap19

Mono.Addin

Beside of the current available solutions some promising projects have been started

at the time of writing this thesis. One of them is the Mono.AddIn framework20. It is

a further development of the SharpDevelop add-in system. The most important

improvement, which is planned for this framework, is the use of Attributes to

define the add-in description. This simplifies the configuration and the refactoring

because the descriptions are at the same place as the associated code. Even

though, it should still be possible to describe the add-ins via the xml files. The

Mono.AddIn framework is intended to create extensible applications. Therefore, it

minimizes one of the main drawbacks of the SharpDevelop add-in system. The

evolution of the Mono.AddIn framework is likely to be more stable than the add-in

system of SharpDevelop.

18 Official Website of the Windsor Container: http://www.castleproject.org/container
19 Official Website of the StructuredMap: http://structuremap.sf.net
20 Official Website of the Mono.Addins: http://www.mono-project.com/Mono.Addins

 61

http://www.castleproject.org/container
http://structuremap.sf.net/
http://www.mono-project.com/Mono.Addins

Acropolis

Another promising project is the Microsoft framework code name Acropolis21. It is a

set of components and tools that simplifies the building and managing of modular

client applications. Microsoft intends Acropolis to be the successor of SCSF / CAB

and promises to create a migration path for existing SCSF / CAB applications

[Block07]. The success factor of Acropolis could be the designer environment in

which a software developer shall be able to define the entire application. If the

designer is well thought out, it would really simplify the development of modular

applications.

Customizing the Software Factory

Another idea for future work is to customize the Smart Client Software Factory to

the needs of a Test Suite. This could also be a way for simplifying the development

of an application in a specific domain. It would be interesting to see how much can

be gained in relation to the efforts necessary in customizing the Software Factory.

21 Official Webste of Acropolis: http://www.windowsclient.com/acropolis

 62

http://www.windowsclient.com/acropolis

Bibliography

Block07 Block, G. 2007. My Technobabble. Glenn Block - patterns & practices client

program factories, patterns and models. Acropolis, the future of Smart Client.

MSDN Blogs.

http://blogs.msdn.com/gblock/archive/2007/06/06/acropolis-the-future-of-

smart-client.aspx. Last visited on July 3, 2007.

BMMB97 Bosch, J., Molin, P., Mattsson, M., and Bengtsson, P.O. 1997. Object-Oriented

Frameworks – Problems & Experiences. Submitted.

http://citeseer.ist.psu.edu/bosch97objectoriented.html. Last visited on May

14, 2007.

Caprio05 Caprio, G. 2005. Design Patterns - Dependency Injection. MSDN Magazine,

September 2005. Microsoft.

http://msdn.microsoft.com/msdnmag/issues/05/09/DesignPatterns. Last

visited on April 13, 2007.

Dhungana06 Dhungana, D. 2006. CAP .NET - Client Application Platform in .NET. Diploma

thesis, Johannes Kepler University, Linz, Austria.

Fowler03 Fowler, M. 2003. Patterns of Enterprise Application Architecture. Addison

Wesley.

Fowler04 Fowler, M. 2004. Module Assembly. IEEE Software. March/April 2004.

http://www.martinfowler.com/ieeeSoftware/moduleAssembly.pdf. Last visited

on February 27, 2007.

Fowler04a Fowler, M. 2004. Inversion of Control Containers and the Dependency Injection

pattern. http://www.martinfowler.com/articles/injection.html. Last visited on

March 19, 2007.

Fowler05 Martin, F. 2005. Inversion Of Control.

http://www.martinfowler.com/bliki/InversionOfControl.html. Last visited on

March 19, 2007.

FSF07 2007. FSF - Licenses. Various Licenses and Comments about Them. Last

modified on April 09, 2007. Free Software Foundation.

http://www.fsf.org/licensing/licenses. Last visited on April 10, 2007.

GB01 Van Gurp, J., and Bosch, J. 2001. Design, Implementation and Evolution of

Object Oriented Frameworks: Concepts & Guidelines. Software Practice &

Experience no 33(3), p. 277-300, March 2001.

http://citeseer.ist.psu.edu/vangurp00design.html. Last visited on July 25,

2007.

 63

http://blogs.msdn.com/gblock/archive/2007/06/06/acropolis-the-future-of-smart-client.aspx
http://blogs.msdn.com/gblock/archive/2007/06/06/acropolis-the-future-of-smart-client.aspx
http://citeseer.ist.psu.edu/bosch97objectoriented.html
http://msdn.microsoft.com/msdnmag/issues/05/09/DesignPatterns
http://www.martinfowler.com/ieeeSoftware/moduleAssembly.pdf
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/bliki/InversionOfControl.html
http://www.fsf.org/licensing/licenses
http://citeseer.ist.psu.edu/vangurp00design.html

GHJV95 Gamma, E., Helm, R., Johnson, R. Vlissides, J. 1995. Design Patterns.

Elements of Reusable Object-Oriented Software. Addison Wesley.

GK07 Gudenkauf, J., and Kaplan, J. 2007. CLR Inside Out: .NET Application

Extensibility. MSDN Magazine. February 2007.

http://msdn.microsoft.com/msdnmag/issues/07/02/CLRInsideOut. Last visited

on February 27, 2007.

GK07a Gudenkauf, J., and Kaplan, J. 2007. CLR Inside OUT: .NET Application

Extensibility, Part 2. MSDN Magazine. March 2007.

http://msdn.microsoft.com/msdnmag/issues/07/03/CLRInsideOut. Last visited

on March 30, 2007.

Grunwald06 Grunwald, D. 2006. Building Applications with the SharpDevelop Core. The

Code Project.

http://www.codeproject.com/csharp/ICSharpCodeCore.asp. Last visited on

April 10, 2007.

Grunwald06a Grunwald, D. 2006. Line Counter - Writing a SharpDevelop Add-In. The Code

Project. http://www.codeproject.com/cs/samples/LineCounterSDAddIn.asp.

Last visited on June 29, 2007.

HKS03 Holm, K., Krüger, M., and Spuida, B. 2003. Dissecting a C sharp Application.

Inside SharpDevelop. Wrox Press.

http://www.apress.com/free/content/Dissecting_A_CSharp_Application.pdf.

Last visited on April 11, 2007.

Johnson92 Johnson, R.E. 1992. Documenting Frameworks with Patterns. Proceedings of

the 7th Conference on Object-Oriented Programming Systems, Languages and

Applications. Vancouver, Canada.

http://citeseer.ist.psu.edu/johnson92documenting.html. Last visited on July

25, 2007.

Larman04 Larman, C. 2004. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and Iterative Development, Third Edition.

Addison Wesley.

Löwy05 Löwy, J. 2005. Programming .NET Components (2nd Edition). O’Reilly

MMS02 Mayer, J., Melzer, I., and Schweiggert, F. 2002. Lightweight Plug-In-Based

Application Development. NODe '02: Revised Papers from the International

Conference NetObjectDays on Objects, Components, Architectures, Services,

and Applications for a Networked World. Pages 87 - 102. Springer-Verlag.

http://citeseer.ist.psu.edu/mayer02lightweight.html. Last visited on March 14,

2007.

 64

http://msdn.microsoft.com/msdnmag/issues/07/02/CLRInsideOut
http://msdn.microsoft.com/msdnmag/issues/07/03/CLRInsideOut
http://www.codeproject.com/csharp/ICSharpCodeCore.asp
http://www.codeproject.com/cs/samples/LineCounterSDAddIn.asp
http://www.apress.com/free/content/Dissecting_A_CSharp_Application.pdf
http://citeseer.ist.psu.edu/johnson92documenting.html
http://citeseer.ist.psu.edu/mayer02lightweight.html

MSDN06 MSDN 2006. Overview of the Composite UI Application Block. Microsoft.

http://msdn2.microsoft.com/en-us/library/aa546409.aspx. Last visited on

March 30, 2007.

MSDN07 MSDN Library. .NET Framework Glossary.

http://msdn2.microsoft.com/en-us/library/6c701b8w(VS.80).aspx. Last visited

on March 17, 2007.

Nilsson06 Nilsson, J. 2006. Applying Domain-Driven Design and Patterns. Addison

Wesley.

Noyes04 Noyes, B. 2004. ClickOnce - Deploy and Update Your Smart Client Projects

Using a Central Server. MSDN Magazine May 2004. Microsoft.

http://msdn.microsoft.com/msdnmag/issues/04/05/ClickOnce. Last visited on

June 30, 2007.

OMG07 2007. Unified Modeling Language: Superstructure. Version 2.1.1. Object

Management Group.

http://www.omg.org/technology/documents/formal/uml.htm. Last visited on

July 30, 2007.

Omicron07 OMICRON electronics GmbH. 2007. About Us.

http://www.omicron.at/aboutus. Last visited on March 17, 2007.

Omicron07a The OMICRON Test Universe. 2007.

http://www.omicron.at/products/secondary. Last visited on March 17, 2007.

SCSF06 2006. Online documentation of Smart Client Software Factory – June 2006.

Microsoft.

Sosnoski05 Sosnoski, D. 2005. Classworking toolkit: Annotations vs. configuration files.

IBM DeveloperWorks.

http://www.ibm.com/developerworks/library/j-cwt08025.html. Last visited on

August 7, 2007.

Spring07 2007. Spring .NET Reference Documentation. Version 1.1 RC 1.

http://www.springframework.net/docs/1.1-RC1/reference/pdf/spring-net-

reference.pdf. Last visited on August 13, 2007.

Sun02 2002. Core J2EE Pattern Catalog. Core J2EE Patterns - Service Locator. Sun

Microsystems.

http://java.sun.com/blueprints/corej2eepatterns/Patterns/ServiceLocator.html.

Last visited on March 28, 2007.

 65

http://msdn2.microsoft.com/en-us/library/aa546409.aspx
http://msdn2.microsoft.com/en-us/library/6c701b8w(VS.80).aspx
http://msdn.microsoft.com/msdnmag/issues/04/05/ClickOnce
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omicron.at/aboutus
http://www.omicron.at/products/secondary
http://www.ibm.com/developerworks/library/j-cwt08025.html
http://www.springframework.net/docs/1.1-RC1/reference/pdf/spring-net-reference.pdf
http://www.springframework.net/docs/1.1-RC1/reference/pdf/spring-net-reference.pdf
http://java.sun.com/blueprints/corej2eepatterns/Patterns/ServiceLocator.html

Glossary

Application Domain

A boundary that the common language runtime establishes around objects created

within the same application scope (that is, anywhere along the sequence of object

activations beginning with the application entry point). Application domains help

isolate objects created in one application from those created in other applications so

that run-time behavior is predictable. Multiple application domains can exist in a

single process [MSDN07].

Application Framework

Application Frameworks aim to provide a full range of functionality typically needed

in an application. This functionality usually involves things like a GUI, documents,

databases, etc [GB01].

Assembly

A collection of one or more files that are versioned and deployed as a unit. An

assembly is the primary building block of a .NET Framework application. All

managed types and resources are contained within an assembly and are marked

either as accessible only within the assembly or as accessible from code in other

assemblies. Assemblies also play a key role in security. The code access security

system uses information about the assembly to determine the set of permissions

that code in the assembly is granted [MSDN07].

Binary compatibility

A core principle of component-oriented programming. It allows exchanging

compatible components (i.e., binary building blocks) without the need of recompiling

and redeploying the clients [Löwy05].

Common Language Runtime

The engine at the core of managed code execution. The runtime supplies managed

code with services such as cross-language integration, code access security, object

lifetime management, and debugging and profiling support [MSDN07].

 66

Component

A component represents a modular part of a system that encapsulates its contents

and whose manifestation is replaceable within its environment. A component defines

its behavior in terms of provided and required interfaces. As such, a component

serves as a type, whose conformance is defined by these provided and required

interfaces [OMG07, p. 146].

Extensibility

A mechanism for manipulating host application objects or extending host

functionality, sometimes referred to as automation. Generally made available via an

object model published as part of a host’s SDK [GK07].

Framework

A set of cooperating classes that makes up a reusable design for a specific class of

software. A framework provides architectural guidance by partitioning the design

into abstract classes and defining their responsibilities and collaborations. A

developer customizes the framework to a particular application by subclassing and

composing instances of framework classes [GHJV95, p. 360].

Intermediate Language (IL)

A language used as the output of a number of high-level language compilers (C#

compiler, VB .NET compiler, etc.) and as the input to a Just-In-Time (JIT) compiler.

The common language runtime includes a JIT compiler for converting IL to native

code [MSDN07].

Just-In-Time (JIT) compiler

In reference to the .NET framework it means the compilation that converts

intermediate language (IL) into machine code at the point when the code is required

at run time [MSDN07].

Private Assembly

An assembly that is available only to clients in the same directory structure as the

assembly [MSDN07].

 67

Remoting

The process of communication between different operating system processes,

regardless of whether they are on the same computer. The .NET Framework

remoting system is an architecture designed to simplify communication between

objects living in different application domains, whether on the same computer or not,

and between different contexts, whether in the same application domain or not

[MSDN07].

Service

The term service is highly overloaded in computer science. In this thesis it has the

same meaning as component. See Component in the glossary for more information.

 68

List of Acronyms

API Application Programming Interface

BCL Base Class Library

CAB Composite UI Application Block

CLR Common Language Runtime

DI Dependency Injection

ERP Enterprise Resource Planning

GUI Graphical User Interface

HTML Hyper Text Markup Language

IDE Integrated Development Environment

IL Intermediate Language

IoC Inversion of Control

JIT Just-In-Time

OOD Object-Oriented Design

PC Personal Computer

RTF Rich Text Format

SCSF Smart Client Software Factory

SDK Software Development Kit

UI User Interface

UML Unified Modeling Language

VB.NET Visual Basic .NET

WPF Windows Presentation Foundation

XML Extensible Markup Language

XSD XML Schema Definition

 69

List of Figures

Figures

Figure 1: The client uses one of the modules through an interface.8
Figure 2: UML class diagram for dependency injection [Fowler04]...................... 12
Figure 3: UML sequence diagram for dependency injection [Fowler04]. 13
Figure 4: UML class diagram for a service locator [Fowler04]. 15
Figure 5: UML sequence diagram for a service locator [Fowler04]. 15
Figure 6: Patterns implemented or supported by the

Composite UI Application Block [MSDN06].. 20
Figure 7: WorkItem hierarchy [MSDN06]. .. 21
Figure 8: Overview of the modules in Spring .NET [Spring07]. 24
Figure 9: Prototype architecture. .. 44
Figure 10: An UML component diagram that shows the modules of the

Test Suite.. 46
Figure 11: Shows the UI elements of the Test Suite... 48
Figure 12: A screenshot of the Test Suite with the TestDevice.Manager. 51
Figure 13: A simplified UML Sequence diagram of creating a new virtual device. .. 53
Figure 14: The WorkItem hierarchy of the TestSuite. 54
Figure 15: File structure of the Test Suite. ... 56

Tables

Table 1: Example directories of the SharpDevelop add-ins................................ 28
Table 2: Checking the fulfillment of the requirements which are defined in

chapter 2. ... 32
Table 3: Shows the evaluation of further quality issues. 38
Table 4: Shows the strategic aspects of the evaluation (July 3, 2007). 41

 70

Listings

Listing 1: Extract of the client class which is configured by constructor injection. . 14
Listing 2: A generic service locator implementation. .. 16
Listing 3: Configuration of setter injection with an Attribute. 17
Listing 4: Configuration of setter injection with an external XML file. 17
Listing 5: Extract of a Spring .NET configuration file. 25
Listing 6: Extract of a Spring .NET configuration file with activated autowiring..... 26
Listing 7: A simple implementation for a SingletonDoozer............................... 29
Listing 8: Registration of the SingletonDoozer. ... 29
Listing 9: Define a component in the .addin file. .. 29
Listing 10: Retrieve the MovieFinder component.. 29
Listing 11: An extract of the ICSharpCode.SharpDevelop.addin file that

shows code duplication.. 37
Listing 12: Registering of two WPF TextBox controls to the IEditManager. 49
Listing 13: Extract of the application configuration file of the Test Suite.............. 57
Listing 14: Thread synchronization in the event handler. 58
Listing 15: Shows how thread synchronization can be done in WPF controls. 59

 71

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Diplomarbeit selbständig

und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die

aus fremden Quellen direkt oder indirekt übernommenen Stellen sind als solche

kenntlich gemacht.

Die Arbeit wurde bisher weder in gleicher noch in ähnlicher Form einer anderen

Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Klaus, am 03.09.2007 Unterschrift

 72

	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Document Structure
	1.4 Intended Audience
	2 Requirements
	The Runtime Platform
	The Test Modules
	Handle Complexity
	Dependencies between the modules
	Module Loading
	Dependency Resolution and Lazy Loading
	Deployment and Versioning
	GUI Integration
	Command Service
	Extensions and Communication between the Modules

	3 Plug-In Architectures
	4 Fundamentals
	4.1 Overview
	4.2 Dependency Injection
	4.3 Service Locator
	4.4 Attributes vs. Configuration Files
	4.5 Summary

	5 Current Solutions
	5.1 Overview
	5.2 Composite UI Application Block
	Architecture
	WorkItem
	Object Builder
	Shell Services
	Core Services
	Module Loading
	License

	5.3 Smart Client Software Factory
	Software Factory
	Composite UI Application Block Extensions for WPF
	License

	5.4 Spring .NET
	IoC Container
	Configuration
	Autowiring
	Application Context
	Loosely Coupled Events
	License

	5.5 SharpDevelop
	Add-In System
	Deployment
	Add-In Tree
	Service Locator
	Conditions
	Framework
	License

	6 Evaluation
	6.1 Overview
	6.2 Fulfillment of the Requirements
	Runtime platform
	Open source and programmed in C#
	Define test modules
	External configuration
	Loose coupling
	Lazy loading of modules
	Modules deployment
	Support for GUI extensions
	Command service
	Loosely coupled events

	6.3 Further quality issues
	Framework composition
	Framework dependencies
	Evolution
	Documentation

	6.4 Strategic aspects
	License
	Roadmap
	Support
	Number of involved persons

	6.5 Decision

	7 Prototype
	7.1 Overview
	7.2 Architecture
	7.3 Modules
	Infrastructure
	Help
	Demonstration Modules
	Editor
	Test Device Management

	7.4 WorkItem hierarchy
	7.5 Implementation of the requirements
	Configuration of the module loader
	Isolate the objects under test
	Lazy loading
	Modules deployment
	Support for GUI extensions
	Command service
	Loosely coupled events

	7.6 Summary

	8 Final Remark
	8.1 Conclusion
	8.2 .NET Framework Application Extensibility
	8.3 Open Issues
	Mono.Addin
	Acropolis
	Customizing the Software Factory

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

